Refleksje nad znaczeniem dzieła „Leonhardi Euleri Opera Omnia, tom IV A (2016) i tom VIII (2018)”
DOI:
https://doi.org/10.4467/2543702XSHS.24.014.19587Słowa kluczowe:
korespondencja Eulera, Christian Goldbach, hipoteza Goldbacha, liczby Catalana, szeregi rozbieżneAbstrakt
Artykuł dotyczy dwóch tomów korespondencji Leonharda Eulera z matematykami i innymi uczonymi. Pierwszy z tych tomów (w dwóch częściach) poświęcony jest korespondencji z Christianem Goldbachem.
Rozważamy wybrane tematy z tej korespondencji, odzwierciedlające różne gałęzie matematyki i pokazujemy tam, gdzie to możliwe, powiązanie przedstawionych tam idei i wyników ze współczesnymi badaniami matematycznymi.
Drugi z omawianych tomów zawiera korespondencję Eulera z uczonymi związanymi z Uniwersytetem w Halle. Listy te, z małymi wyjątkami zawierają mniej treści matematycznych, pozwalają na wyobrażenie ówczesnego życia akademickiego.
Bibliografia
Blaschke, Wilhelm 1959: Euler und die Kinematik. [In:] Kurt Schröder, Sammelband der zu Ehren des 250. Geburtstages LEONHARD EULERs der Deutschen Akademie der Wissenschaften zu Berlin vorgelegten Abhandlungen, Akademie-Verlag. Berlin, pp. 35–41.
Błaszczyk, Piotr 2022: A Purely Algebraic Proof of the Fundamental Theorem of Algebra,
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 8, pp. 7–23.
Błaszczyk, Piotr; Petiurenko, Anna 2023): Euler’s Series for Sine and Cosine: An Interpretation in Nonstandard Analysis. In: Zack, M., Waszek, D. (eds) Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques. Birkhäuser, Cham. DOI: 10.1007/978-3-031-21494-3_5.
Calinger, Roland 1996: Leonhard Euler: The First St. Petersburg Years (1727–1741). Historia Mathematica 23, pp. 121–166.
Catalan, Eugène Ch. 1838: Note sur une équation aux différences finies. Journal des Mathématiques Pures et Appliquées 3, pp. 508–516.
Catalan, Eugène Ch. 1887: Sur les nombres de Segner. Rendiconti del Circolo Matematico di Palermo 1, pp. 190–201.
Cohen, Eliahu; Tobias Hansen, Itzhaki, Nissan 2016, From entanglement witness to generalized Catalan numbers. Scientific Reports 6, 30232. DOI: 10.1038/srep30232.
Denkowski, Maciej P. 2020: Leonhardi Euleri Opera Omnia IVA/7: Commercium Epistolicum (2017, Euler – French Speaking Scientists From Switzerland). Editors: S. Bodenmann, V. Hug, M. Ilić, A. Kleinert. Basel: Birkhäuser, 2017, XII+621 pages – A volume overview. Studia Historiae Scientiarum 19, pp. 545–560. DOI: 10.4467/2543702XSHS.20.017.12573.
Domoradzki, Stanisław 2007: On Euler summation method in S. Banach’s monograph. [In:] L. Euler and contemporary science, conference materials (In Russian.), pp. 111–116, Petersbourg.
Eneström, Gustaf 1910: Verzeichnis der Schriften Leonhard Eulers (“Jahresbericht der Deutschen Mathematiker-Vereinigung”, 1910).
Euler, Leonhard 1758: Elementa doctrinae solidorum. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae 4 (1752–1753), pp. 109–140, Opera Omnia (1) Volume 26, pp. 72–93.
Euler, Leonhard, Demonstratio nonnullarum insignium proprietatum quibas solida hedris planis inclusa sunt praedita, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae 4 (1752–1753), 140-160 (published 1758) Opera Omnia (1) Volume 26, pp. 94-108.
Euleri Leonhardi 2016: Opera Omnia vol. IVA 4: Commercium Epistolicum cum Christiano Goldbach / Correspondence with Christian Goldbach. Basel: Springer. Editors: Franz Lemmermeyer, Martin Mattmüller, ISBN: 978-3-0348-0892-7 (Pt. I); 978-3-0348-0880-4 (Pt. II).
Leonhardi Euleri 2018: Opera Omnia. Series Quarta A: Commercium Epistolicum 8. Cham: Birkhäuser (ISBN 978-3-319-75942-5/hbk). xiv, 713 p.
Farber, Michael 2008: Invitation to Topological Robotics. EMS Press, 143 p.
Ferraro, Giovanni 1998: Some Aspects of Euler’s Theory of Series: Inexplicable Functions and the Euler–Maclaurin Summation Formula. Historia Mathematica 25(3), pp. 290–317.
Hamilton, William R. 1844–1850: On quaternions or a new system of imaginaries in algebra. Philosophical Magazine. URL: https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/OnQuat/OnQuat.pdf.
Helfgott, Harald A. 2013: The ternary Goldbach conjecture is true. arXiv:1312.7748 [math.NT].
Helfgott, Harald A. 2015: The ternary Goldbach problem. arXiv:1501.05438 [math.NT].
Hutchinson, John E. 1981: Fractals and self-similarity. Indiana University Mathematics Journal 30, pp. 713–747.
Kanovei, Vladimir; Reeken, Michael 1995–96: Summation of divergent series from the nonstandard point of view. Real Analysis Exchange 21(2), pp. 473–497.
Koetsier, Teun 2007: Euler and Kinematics. [In:] Robert E. Bradley, Edward Sandifer (eds.), Leonhard Euler: Life, Work and Legacy. Elsevier B.V., pp. 167–194.
Kowalenko, Victor 2011: Euler and Divergent Series. European Journal of Pure and Applied Mathematics 4, pp. 370-423.
Larcombe, Peter J. 1999: The 18th century Chinese discovery of the Catalan numbers. Mathematical Spectrum 32(1), pp. 5–7.
Maligranda, Lech 2008: Gustaf Eneström (1852–1923). Antiquitates Mathematicae 2, ss. 27–36.
Mandelbrot, Benoît B. 1982: The Fractal Geometry of Nature. “Times Books”, 468 pp., ISBN:9780716711865
Pak, Igor 2014: History of Catalan numbers, arXiv:1408.5711.
Riordan, John 1968: Combinatorial Identities. New York: John Wiley.
e Silva, Tomás Oliveira; Herzog, Siegfried; Pardi, Silvio 2014: Empirical Verification of the even Goldbach Conjecture and Computation 0f prime gaps up to 41018. Mathematics of Computation, pp. 2033–2060. DOI: 10.1090/S0025-5718-2013-02787-1.
Schnirelmann, Lev G. 1930: On the additive properties of numbers, first published. [In:] Proceedings of the Don Polytechnic Institute in Novocherkassk (in Russian), vol 14, pp. 3–27, and reprinted in Uspekhi Matematicheskikh Nauk (in Russian), 1939, no. 6, pp. 9–25.
Snorrason, Egill 1974: C.G. Kratzenstein, professor physices experimentalis Petropol. et Havn. and his studies on electricity during the eighteenth century, Odense: Odense University Press. ISBN 87-7492-092-8.
Stanley, Richard P. 2015: Catalan Numbers. Cambridge: Cambridge University Press.
Tao, Terence (2014), Every odd number greater than 1 is the sum of at most five primes. Mathematics of Computation 83(286), pp. 997–1038. arXiv:1201.6656. DOI: 10.1090/S0025-5718-2013-02733-0, MR 3143702.
Więsław, Witold 2008: Prace Eulera z algebry. Antiquitates Mathematicae 2, ss. 121–132.
Yushkevich, Adolph P.; Kopelevich, Judith Ch. 1983: Christian Goldbach (1690–1764) (Russian). Moscow: “Nauka”, 1983).
Yushkevich, Adolph P.; Kopelevich, Judith Ch. 1994: Christian Goldbach (1690–1764) (German). Basel: Birkhäuser Verlag.