Reflections on the Importance of the Leonhardi Euleri Opera Omnia, Volume IV A (2016) and Volume VIII (2018)
DOI:
https://doi.org/10.4467/2543702XSHS.24.014.19587Keywords:
Euler’s correspondence, Christian Goldbach, Goldbach conjecture, Catalan numbers, divergent seriesAbstract
The article is devoted to two volumes of Leonhard Euler’s correspondence with mathematicians and other scientists.
The first of these volumes (in two parts) is devoted to correspondence with Christian Goldbach. We consider selected topics from this correspondence reflecting various branches of mathematics and demonstrate, where possible, the connection of the ideas and results presented there with modern mathematical research.
The second of these two volumes contains Euler’s correspondence with scholars associated with the University of Halle. These letters, with a small exception, have less mathematical content, but allow to create an impression of academic life at that time.
References
Blaschke, Wilhelm 1959: Euler und die Kinematik. [In:] Kurt Schröder, Sammelband der zu Ehren des 250. Geburtstages LEONHARD EULERs der Deutschen Akademie der Wissenschaften zu Berlin vorgelegten Abhandlungen, Akademie-Verlag. Berlin, pp. 35–41.
Błaszczyk, Piotr 2022: A Purely Algebraic Proof of the Fundamental Theorem of Algebra,
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 8, pp. 7–23.
Błaszczyk, Piotr; Petiurenko, Anna 2023): Euler’s Series for Sine and Cosine: An Interpretation in Nonstandard Analysis. In: Zack, M., Waszek, D. (eds) Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques. Birkhäuser, Cham. DOI: 10.1007/978-3-031-21494-3_5.
Calinger, Roland 1996: Leonhard Euler: The First St. Petersburg Years (1727–1741). Historia Mathematica 23, pp. 121–166.
Catalan, Eugène Ch. 1838: Note sur une équation aux différences finies. Journal des Mathématiques Pures et Appliquées 3, pp. 508–516.
Catalan, Eugène Ch. 1887: Sur les nombres de Segner. Rendiconti del Circolo Matematico di Palermo 1, pp. 190–201.
Cohen, Eliahu; Tobias Hansen, Itzhaki, Nissan 2016, From entanglement witness to generalized Catalan numbers. Scientific Reports 6, 30232. DOI: 10.1038/srep30232.
Denkowski, Maciej P. 2020: Leonhardi Euleri Opera Omnia IVA/7: Commercium Epistolicum (2017, Euler – French Speaking Scientists From Switzerland). Editors: S. Bodenmann, V. Hug, M. Ilić, A. Kleinert. Basel: Birkhäuser, 2017, XII+621 pages – A volume overview. Studia Historiae Scientiarum 19, pp. 545–560. DOI: 10.4467/2543702XSHS.20.017.12573.
Domoradzki, Stanisław 2007: On Euler summation method in S. Banach’s monograph. [In:] L. Euler and contemporary science, conference materials (In Russian.), pp. 111–116, Petersbourg.
Eneström, Gustaf 1910: Verzeichnis der Schriften Leonhard Eulers (“Jahresbericht der Deutschen Mathematiker-Vereinigung”, 1910).
Euler, Leonhard 1758: Elementa doctrinae solidorum. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae 4 (1752–1753), pp. 109–140, Opera Omnia (1) Volume 26, pp. 72–93.
Euler, Leonhard, Demonstratio nonnullarum insignium proprietatum quibas solida hedris planis inclusa sunt praedita, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae 4 (1752–1753), 140-160 (published 1758) Opera Omnia (1) Volume 26, pp. 94-108.
Euleri Leonhardi 2016: Opera Omnia vol. IVA 4: Commercium Epistolicum cum Christiano Goldbach / Correspondence with Christian Goldbach. Basel: Springer. Editors: Franz Lemmermeyer, Martin Mattmüller, ISBN: 978-3-0348-0892-7 (Pt. I); 978-3-0348-0880-4 (Pt. II).
Leonhardi Euleri 2018: Opera Omnia. Series Quarta A: Commercium Epistolicum 8. Cham: Birkhäuser (ISBN 978-3-319-75942-5/hbk). xiv, 713 p.
Farber, Michael 2008: Invitation to Topological Robotics. EMS Press, 143 p.
Ferraro, Giovanni 1998: Some Aspects of Euler’s Theory of Series: Inexplicable Functions and the Euler–Maclaurin Summation Formula. Historia Mathematica 25(3), pp. 290–317.
Hamilton, William R. 1844–1850: On quaternions or a new system of imaginaries in algebra. Philosophical Magazine. URL: https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/OnQuat/OnQuat.pdf.
Helfgott, Harald A. 2013: The ternary Goldbach conjecture is true. arXiv:1312.7748 [math.NT].
Helfgott, Harald A. 2015: The ternary Goldbach problem. arXiv:1501.05438 [math.NT].
Hutchinson, John E. 1981: Fractals and self-similarity. Indiana University Mathematics Journal 30, pp. 713–747.
Kanovei, Vladimir; Reeken, Michael 1995–96: Summation of divergent series from the nonstandard point of view. Real Analysis Exchange 21(2), pp. 473–497.
Koetsier, Teun 2007: Euler and Kinematics. [In:] Robert E. Bradley, Edward Sandifer (eds.), Leonhard Euler: Life, Work and Legacy. Elsevier B.V., pp. 167–194.
Kowalenko, Victor 2011: Euler and Divergent Series. European Journal of Pure and Applied Mathematics 4, pp. 370-423.
Larcombe, Peter J. 1999: The 18th century Chinese discovery of the Catalan numbers. Mathematical Spectrum 32(1), pp. 5–7.
Maligranda, Lech 2008: Gustaf Eneström (1852–1923). Antiquitates Mathematicae 2, ss. 27–36.
Mandelbrot, Benoît B. 1982: The Fractal Geometry of Nature. “Times Books”, 468 pp., ISBN:9780716711865
Pak, Igor 2014: History of Catalan numbers, arXiv:1408.5711.
Riordan, John 1968: Combinatorial Identities. New York: John Wiley.
e Silva, Tomás Oliveira; Herzog, Siegfried; Pardi, Silvio 2014: Empirical Verification of the even Goldbach Conjecture and Computation 0f prime gaps up to 41018. Mathematics of Computation, pp. 2033–2060. DOI: 10.1090/S0025-5718-2013-02787-1.
Schnirelmann, Lev G. 1930: On the additive properties of numbers, first published. [In:] Proceedings of the Don Polytechnic Institute in Novocherkassk (in Russian), vol 14, pp. 3–27, and reprinted in Uspekhi Matematicheskikh Nauk (in Russian), 1939, no. 6, pp. 9–25.
Snorrason, Egill 1974: C.G. Kratzenstein, professor physices experimentalis Petropol. et Havn. and his studies on electricity during the eighteenth century, Odense: Odense University Press. ISBN 87-7492-092-8.
Stanley, Richard P. 2015: Catalan Numbers. Cambridge: Cambridge University Press.
Tao, Terence (2014), Every odd number greater than 1 is the sum of at most five primes. Mathematics of Computation 83(286), pp. 997–1038. arXiv:1201.6656. DOI: 10.1090/S0025-5718-2013-02733-0, MR 3143702.
Więsław, Witold 2008: Prace Eulera z algebry. Antiquitates Mathematicae 2, ss. 121–132.
Yushkevich, Adolph P.; Kopelevich, Judith Ch. 1983: Christian Goldbach (1690–1764) (Russian). Moscow: “Nauka”, 1983).
Yushkevich, Adolph P.; Kopelevich, Judith Ch. 1994: Christian Goldbach (1690–1764) (German). Basel: Birkhäuser Verlag.