Nikolai Nikolaevich Luzin at the crossroads of the dramatic events of the European history of the first half of the 20th century


  • Sergeĭ S. Demidov M.V. Lomonosov Moscow State University (Moscow, Russia)



D. Egorov, set theory, theory of functions of a real variable, Moscow school of function theory, W. Sierpinski, axiom of choice, continuum hypothesis, M. Suslin, effectivism, Borel set, analytic set


Nikolai Nikolaevich Luzin’s life (1883–1950) and work of this outstanding Russian mathematician, member of the USSR Academy of Sciences and foreign member of the Polish Academy of Arts and Sciences, coincides with a very difficult period in Russian history: two World Wars, the 1917 revolution in Russia, the coming to power of the Bolsheviks, the civil war of 1917–1922, and finally, the construction of a new type of state, the Union of Soviet Socialist Republics. This included collectivization in the agriculture and industrialization of the industry, accompanied by the mass terror that without exception affected all the strata of the Soviet society. Against the background of these dramatic events took place the proces of formation and flourishing of Luzin the scientist, the creator of one of the leading mathematical schools of the 20th century, the Moscow school of function theory, which became one of the cornerstones in the foundation of the Soviet mathematical school. Luzin’s work could be divided into two periods: the first one comprises the problems regarding the metric theory of functions, culminating in his famous dissertation Integral and Trigonometric Series (1915), and the second one that is mainly devoted to the development of problems arising from the theory of analytic sets. The underlying idea of Luzin’s research was the problem of the structure of the arithmetic continuum, which became the super task of his work.

The destiny favored the master: the complex turns of history in which he was involved did not prevent, and sometimes even favored the successful development of his research. And even the catastrophe that broke out over him in 1936 – “the case of Academician Luzin” – ended successfully for him.


Bogachëv, V.I. 2013: Luzinskie motivy v sovremennykh issledovaniiakh. Sovremennye problemy matematiki i mekhaniki. Moskva: Izd-vo mekhaniko-matematicheskogo fakul’teta MGU. T.8, Vyp. 2, pp. 4–24.

Demidov, Sergei S.; Levshin, Boris Venediktovich 2019: Delo akademika Nikolaia Nikolayevicha Luzina. Moskva: Izd-vo MTSNMO.

Dugac, P. 2000: «Delo» Luzina i frantsuzskie matematiki. Istoriko-matematicheskie issledovaniia, Ser. 2, 5 (40), pp. 119–142. Available online:

Egorov, D.F. 1980: Pis’ma D.F. Egorova k N.N. Luzinu. Predislovie P.S. Aleksandrova. Publikatsiia i primechaniia F.A. Medvedeva pri uchastii A.P. Yushkevicha 1980: Istoriko-matematicheskie issledovaniia 25, pp. 335–361. Available online:

Gao, S. 2009: Invariant Descriptive Set Theory. Boca Raton, FL: CRC Press.

Golubev, V.V.; Bari, N.K. 1951: Biografiia N.N. Luzina. Luzin N.N. Integral i trigonometricheskiĭ ryad. Moskva–Leningrad: Gostekhizdat, pp. 11–31.

Igoshin, V.I. 1996: Mikhail Iakovlevich Suslin. 1894–1919. Moskva: Nauka. Fizmatlit.

Kanovei, V. 2008: Borel Equivalence Relations; Structure and Classification. New York: American Mathematical Society. (“University Lecture Series of AMS” vol. 44).

Kanoveĭ, V.G. 1985: Razvitie deskriptivnoĭ teorii mnozhestv pod vliianiem trudov N.N. Luzina. Uspekhi matematicheskikh nauk 40/3(243), pp. 117–155.

Kanoveĭ, V.G.; Liubetskiĭ V.A. 2007: Sovremennaia teoriia mnozhestv: nachala deskriptivnoĭ dinamiki. Moskva: Nauka.

Kanoveĭ, V.G.; Liubetskiĭ, V.A 2010: Sovremennaia teoriia mnozhestv: borelevskie i proektivnye mnozhestva. Moskva: MTSNMO.

Kanoveĭ, V.G.; Liubetskiĭ, V.A. 2013: Sovremennaia teoriia mnozhestv: absolyutno nerazreshimye klassicheskie problemy. Moskva: MTSNMO.

Keldysh, L.V. 1974: Idei N.N. Luzina v deskriptivnoĭ teorii mnozhestv. Uspekhi matematicheskikh nauk 29/5(179), pp. 183–196.

Keldysh, L.V.; Novikov, P.S. 1953: Raboty N.N. Luzina v oblasti deskriptivnoĭ teorii mnozhestv. Uspekhi matematicheskikh nauk 8/2(54), pp. 93–104.

Luzin, N.N. 1911: “Über eine Potenzreihe”. Rendiconti del Circolo Matematico di Palermo 32, pp. 386–390.

Luzin, N.N. 1912a: K osnovnoĭ teoreme integral’nogo ischisleniia. Matematicheskiĭ sbornik 28 (2), pp. 266–294.

Lusin, N 1912b: Sur les propriétés des fonctions mesurables. Comptes Rendus de l’Académie des Sciences (Paris) 154, pp. 1688–1690.

Lusin N.N. 1912c: Sur l’absolue convergence des series trigonometriques. Comptes Rendus de l’Academie des Sciences (Paris) 155, pp. 580–582.

Lusin N.N. 1913: Sur la convergence des series trigonometriques de Fourier. Comptes Rendus de l’Academie des Sciences (Paris) 156, pp. 1655–1658.

Lusin, N.N. 1914: Sur un problème de M. Baire. Comptes Rendus de l’Académie des Sciences Paris 158, pp. 1258–1261.

Luzin, N.N. 1915: Integral i trigonometricheskiĭ riad. Moskva: Tip. Lissnera i Sobko.

Lusin, N. 1930: Leçons sur les ensembles analytiques et leurs applications. Préface de M. Henri Lebesgue; une note de M.Waclaw Sierpinski. Paris: Gauthier-Villars.

Luzin, N.N. 1958: Sobranie sochineniĭ. T. 2. Moskva: Izd-vo AN SSSR.

Luzin, N.N. 1989: Perepiska N.N Luzina s P.A. Florenskim. Publikatsiia, predislovie i primechaniia S.S. Demidova, A.N. Parshina, S.M. Polovinkina, P.V. Florenskogo). Istoriko-matematicheskie issledovaniia 31, pp. 116–125. Available online:

Moschovakis, Y. 1980: Descriptive Set Theory. Amsterdam: North Holland.

Tiulina, A.K. 2006: Ob odnoĭ rukopisi neizvestnogo avtora (k biografii N.N. Luzina). Istoriko-matematicheskie issledovaniia, seriia 2, 11 (46), pp. 267–306. Available online:

Uspenskiĭ, V.A. 1985: Vklad N.N. Luzina v deskriptivnuiu teoriiu mnozhestv i funktsiĭ: ponyatiia, problemy, predskazaniia. Uspekhi matematicheskikh nauk 40/3 (243), pp. 85–116.

Volkov V.A. 2005: D.F. Egorov: Novye arkhivnye dokumenty (k istorii Moskovskoĭ matematicheskoĭ shkoly). Istoriko-matematicheskie issledovaniia, seriia 2, 10 (45). pp. 13–19. Available online:




How to Cite

Demidov, S. S. (2021). Nikolai Nikolaevich Luzin at the crossroads of the dramatic events of the European history of the first half of the 20th century. Studia Historiae Scientiarum, 20, 317–335.