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O symetrii zjawisk fizycznych, symetrii pola elektrycznego 

i pola magnetycznego 

 
Abstrakt 

W pracy klasyczne pojęcie symetrii ograniczone do obiektów geometrycznych (figur, brył), 

znajdujące swoje źródło w antycznej Grecji, zostało rozszerzone tak, by możliwe było badanie 

symetrii innych rodzajów obiektów.  

Poprzez wprowadzenie pojęcia granicznych grup punktowych i elementów kinematycznych 
charakteryzujących obiekt, którego symetria jest badana, określono, jakiego typu symetrie wykazują 

pole elektryczne i pole magnetyczne. Ustalono, że aby możliwe było zachodzenie jakiegoś zjawiska, 
to charakterystyczna symetria ośrodka musi być zgodna z charakterystyczną symetrią 

występującego w nim zjawiska. Stwierdzono, także, że elementy symetrii przyczyn muszą znaleźć 

odzwierciedlenie w symetrii wywołanych skutków. 

Słowa kluczowe: symetria, dyssymetria, graniczne grupy punktowe, symetria przyczyn i skutków, 

symetria pól fizycznych, symetria charakterystyczna zjawiska, symetria charakterystyczna ośrodka  

           (Abstrakt i słowa kluczowe opracowane przez Andrzeja Ziółkowskiego) 

 

1. I think it would be useful to introduce symmetry considerations known to crystallographers 

into the study of physical phenomena 

For example, an isotropic body can be set in a rectilinear or a rotary motion; A fluid can 

be a medium of vortex motions; A solid can be compressed or twisted; It may be in an electric 

or magnetic field; Electric current or heat may flow through it; Natural light or light that is 

rectilinearly, circularly, elliptically, etc. polarized can pass through it. In all these cases, the 

occurrence of some characteristic dissymmetry is necessary, in every point of the body. 

Dissymmetries will be even more complex if we assume that several phenomena coexist in the 

same medium or if these phenomena are caused in a crystalline medium, which already has — 

due to its structure — a certain dissymmetry. 

Physicists often take advantage of the conditions resulting from symmetry, however, they 

generally pass over defining the symmetry of the phenomenon itself, because quite often the 

symmetry conditions are simple and almost obvious, a priori1. 

However, in teaching physics it would be better to formulate these problems explicitly, 

e.g. in electricity research, to find out almost immediately the existence of a characteristic 

symmetry of the electric field and the magnetic field; we could then use these concepts 

to simplify many demonstration experiments. 

From the point of view of general ideas, the concept of symmetry can be compared with 

the concept of dimension: these two fundamental concepts are characteristics for the medium 

in which the phenomenon occurs, and for the quantity used to assess the intensity of the 

phenomenon, respectively. 

 
The translation has been provided with translator’s end notes and a commentary with additional 

explanations and information aimed at facilitating the correct understanding of the text without the need for a broad 

query in external resources. The end notes are marked in the translation as (P1), (P2), etc., and their full content 

is available in the Extended Commentary added below the translated work. 
1 Crystallographers who need to consider more complex cases have developed a general theory 

of symmetry. In treaties in the field of physical crystallography (which are at the same time actual physical 

dissertations), the issues of symmetry are exposed with the utmost care. See the works of MALLARD (Mallard 1879, 
1884), LIEBISCH (Liebisch 1891), SORET (Soret 1893). 
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Two media with the same dissymmetry are linked by a special connection, from which 

we can draw physical consequences. The relationship of the same type exists between two 

quantities of the same dimension. Finally, when certain causes induce certain effects, the 

elements of symmetry of the causes must find reflection in the symmetry of produced effects. 

Similarly, in the equation of the physical phenomenon there is a cause-effect relationship 

between the quantities appearing on both sides of the equation, and these quantities on both 

sides have the same dimension. 

2. Recovery operations and symmetry elements 

Determining various types of symmetry can be divided into two large areas, depending 

on whether it is about determining the symmetry of a limited system or a system that can 

be considered unbounded. We will only deal with a limited system here2. 

Consider a system defined using analytical data and three orthogonal coordinate axes, for 

example. The system will have some symmetry (P1) when upon using other orthogonal axes 

of coordinates it will still be defined by the same analytical data. 

Elements (points, lines, planes, etc.) defined by means of the same analytical data referred 

to such different triads of coordinate axes are homological elements or the elements of the same 

type. 

The operation which makes the transition from the first system to the second is a recovery 

operation3 (P2). 

There are two types of orthogonal triads of coordinate axes symmetrical relative to each 

other. We will have a recovery operation of the system of the first type when such an operation 

is a transition from one triad of axes to the other identical triad of axes. The operation 

is therefore equivalent to simple displacement in space (P3). The repetition of the same elements 

in the system takes place. 

We will have a recovery operation of the second type or symmetric transformation in the 

right sense, when the operation is the transition from one triad of axes to another one symmetric 

to the first. 

The system is then identical to its image obtained by mirror reflection. 

It can be easily demonstrated that during the recovery operation of a limited system 

at least one point always stays constant in space. It follows that the establishment of all possible 

types of symmetry of the limited system comes down to establishing all types of symmetry 

around the point which is the center of the shape of the system. 

The recovery operations of the first type can always be obtained by a simple rotation 

around the repetition axis (more generally called the symmetry axis) passing through the point. 

The axis of degree q  (where q  is an integer number) will give recovery (translator’s note: 

 
2 The theory of structure of crystalline bodies is nothing else but the general theory of symmetry 

of an unlimited medium with a periodic structure. This is an admirable theory that was developed by BRAVAIS 

(Bravais 1866), JORDAN (Jordan 1868a; 1868b) and FEDOROW (Fedorow 1891, 1892). Recently, SCHŒNFLIES 
published a great didactic treaty dedicated to this theory, Krystallsysteme und Krystallstruktur (Schœnflies 1891). 

Crystalline bodies can be divided into 32 classes (translator’s note: point crystallographic groups 

or equivalently crystallographic classes), if we consider only symmetries of the external shape; but the theory 
predicts 230 different types of symmetry for the internal structure of these substances (translator’s note: spatial 
crystallographic groups). If all these types exist in nature, it is a  real wealth for physicists, because they have 230 

media with various symmetries at their disposal. 
3 Shuffling transformation according to German crystallographers. 
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overlapping, invariance, stability) of the system at rotation angles 0,1, 2, ... , ( 1)q−  times 

2 / q  (translator’s note: q -fold axis, e.g. two-fold, three-fold etc.). 

We will consider the direction and sense of each axis of the system, which doubles the 

number of axes, because for one axis we will count two directions with opposite sense. If these 

two axes with opposite sense are of different type from the point of view of repetitions (for 

example, the axis of the regular pyramid) and of the degree q , we will mark them by ( )q qL l  (P4). 

If these two axes with opposite sense are of the same type with respect to repetitions (for 

example, the main axis of the prism) and of the degree q , we will mark them by (2 )qL . We then 

have a double axis (P5). In this case, in the system, by necessity, there exists an axis 

of repeatability with an even degree perpendicular to the double axis, which allows its 

transformation into itself by rotation by 180°, which is the element of the recovery operation 

of the system. 

The recovery operations of the second type can always be obtained by mirror reflection, 

which is accompanied by rotation around the axis normal to the plane of mirror reflection. 

Several cases should be examined: 

1° Rotation is zero; we have a simple mirror reflection and the system has a plane 

of symmetry (P). 

2° Rotation is 180°; we have a center of symmetry (C). 

3° Axis normal to the reflection plane is the axis of repetitions of degree q  and we have 

q  symmetric transformations; each of these operations consists of one mirror image, which 

is followed by one of the rotations 

 
2 2 2

0, , 2 , ... , ( 1) ;q
q q q

  
−  

We then have a simple plane of symmetry of the degree q , which we will mark by 
qP . 

4° Axis normal to the reflection plane is the axis of repetitions of degree q  and we have 

q  symmetric transformations; each of these operations consists of a mirror image, which 

is followed by one of the rotations 

 
1 2 1 2 1 2 1 2

, (1 ) , (2 ) , ... , ( 1 )
2 2 2 2

q
q q q q

   
+ + − +  

around the axis. We then have an alternative plane of symmetry of degree q ; we will denote 

it by q . 

The model shown in Figure 1. has an axis of degree 4 with a plane 4P  of a simple 

symmetry of degree 4. Four lower arrows are obtained by a simple mirror reflection of the four 

upper arrows and vice versa. The system can be recovered by a simple mirror reflection and the 

accompanying rotation by 90° repeated a certain number of times. 

The model in Figure 2. has an axis of the 4th degree and an alternative symmetry plane 

4  of the 4th degree, perpendicular to the direction of the axis. Four lower arrows differ 

in location with images of the four upper arrows obtained by a simple mirror reflection. The 

system can be recovered by mirror reflection, followed by rotation by 45° degrees an odd 

number of times. 
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It is worth noting that the model in Figure 2. is overlayable on its mirror image, although 

it has neither a plane nor a center of symmetry. There is only an alternative symmetry plane4. 

3. Groups of recovery operations 

All recovery operations of the system are defined by the use of the symmetry elements that 

we have just listed.  

A group of recovery operations will be a combination of operations in such a way that 

any two operations carried out successively will give the same result as the one which 

is obtained through a single operation included in the group. 

 

                           Fig. 1.   Fig. 2. 

Here we give the full table of all groups of recovery operations relative to the point. These 

operations are completely defined by listing the elements of symmetry. 

We can see that groups of symmetry elements can be divided into seven classes which 

differ from each other in the character of the group of axes which they contain (translator’s 

note: The division into symmetry classes introduced below is based on different criteria 

compared to the criteria of classic division into crystallographic classes, although it is analogous 

to it.). Each class can exist with or without symmetric transformation in the proper sense 

(translator’s note: i.e., in the understanding of P. Curie, the mirror image). Usually there are 

several ways to give symmetry in the proper sense to a group that contains nothing but axes. 

We obtain a total of 19 families f . Let us consider, for example, the class III and assume that 

3q = , we will have a group of axes 3 2 22 , (3 , 3 )L L L , i.e. a double main axis of degree 3, and 

three 2-fold axes and those with the opposite sense of the different type 2 23( , )L L ; these three 

axes are perpendicular to the main axis and they form angles of 120° among them. This system 

can exist without any other element of symmetry [family (8), the crystalline form of quartz],  

 
4 P. CURIE (Curie 1884, pp. 89, 418). 
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  Table 1 (P6) 

Class Axes of repeatability 

(rotational symmetry) 

Family Symmetry 

transformations 

N Examples 

(crystallographic system) 

International 

notation 

  1 O 1   

I. (No symmetry axis) 2 P 2  m  

  3 C 2 parallelepiped (triclinic) 1  

  4 O 2q q =  wine acid (monoclinic)  

  

5 Pq 

2

2 6

q

q q

q

=


=
 = 

 
gypsum (monoclinic) 

apatite (hexagonal) 

magnetic field 

2 / m  

6 / m  

/ m  

II. Lq lq 

(Axis and its inversion) 6 π q 2
3

q
q

q

= 


=

 
magnetic field 

dioptase (trigonal) 

/ m  

3  

  
7 qP 

3
2

q
q

q

=


= 

 
tourmaline (trigonal) 

electric field, cut cone 

3m  

m  

  8 
O 

3
2

q
q

q

=


= 

 
quartz (trigonal) 

twisted fiber 

32  

2  

III. 2Lq , qL2 , ql'2 

(Double main axis) 

9 
Pq , qP 

3
4

q
q

q

=


= 

 
prisms with a triangular base 

cylinder 

6 2 m  

mm  

  10 

π q , qP 4 3

2

q

q q

q

= 


=
 =

 

cylinder 

rhombohedron, spar (trigonal) 

scalenohedron (tetragonal) 

mm  

3m  

4 2 m  

  11 O 12 sodium chlora te (cubic) 23  

IV. 4(L3 l3), 6L2 

(axes of regular 

12 
4π3 , 3P2 , C 24 pyrite (cubic) 3m  

 tetrahedron) 13 
3π 2 , 6P 24 

regular tetrahedron, 

zinc blende ZnS (cubic) 

4 3m  

4 3m  

1

2
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V. 6L4 , 8L3 , 12L2 14 O 24 cuprite (cubic) 4 / 32 /m m  

 (axes of cube) 15 3P4 , 4π 3 , 6P2 , C 48 cube, octahedron 4 / 32 /m m  

VI. 12L5 , 20L3 , 30L2 16 O 60   

 (axes of regular 

icosahedron) 

17 6π 5 , 10π 3 , 15P2 , 

C 
120 

regular icosahedron, 

regular dodecahedron 

5 3

532

m  

VII. ∞ L∞ 18 
O ∞ 

sphere filled with 

fluid with vortices 
  

 (axes of sphere) 19 ∞ P∞ , C ∞ sphere m  

In Table 1.: 

( ,q qL l ) denotes axis of degree (multiplicity) q, and axis with opposite sense of a different type, 

( 2 qL ) denotes double axis of degree q, C  is center of symmetry, P  is plane of symmetry, 

qP   is a simple plane of symmetry of degree q, 

q   is alternative plane of symmetry of degree q. 

(Translator’s note: O  denotes ‘auxiliary point’; this is not a center of symmetry, see Figure 2. Information about the crystallographic system in the last 

but one and the last columns with the naming according to the Hermann-Mauguin (H-M) classification were added by the translator.) 

 

https://en.wikipedia.org/wiki/Icosahedron
https://en.wikipedia.org/wiki/Icosahedron
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or with a plane of symmetry of degree 3 perpendicular to the main axis 
3( )P  and 3 symmetry 

planes 3P  containing the main axis and 2-fold axes [family (9) prism with a triangular base]. 

We can still have a symmetric system [family (10), rhombohedron] with an alternative plane 

of symmetry 
3  perpendicular to the main axis, 3 symmetry planes containing the main axis 

and perpendicular to the 2-fold axes and with the center of symmetry. 

Each family of classes II and III contains an infinite number of  groups, q  can be any 

integer. Families of other classes contain only one group. 

In families (5) and (9), there is a center of symmetry when q  is even. In families (6) and 

(10), there is a center of symmetry when q  is odd. 

In class III, axes 2L  and 2L  coincide, but have opposite senses if q  is odd. On the 

contrary, we have 2-fold, double axes of two different types if q  is even. 

The numbers N  determine the class of each group. The N  specifies the number 

of homologous points (translator’s note: equivalent configurations) between them in a system, 

when the points considered are not located on any axis or on any plane of symmetry. The N  

is also the number of orthogonal triads of coordinate axes in which the system looks the same. 

Systems with symmetry of families 1, 4, 8, 11, 14, 16, 18, which contain only axes, cannot 

be overlaid onto their image obtained by mirror reflection; they have enantiomorphic 

dissymmetry5. (P7) 

A very important concept, from the point of view of our current interests, is the concept 

of subgroups (translator’s note: The word intergroupe appearing in the original was replaced 

by subgroup as used nowadays). A group of symmetry elements is a subgroup of a wider group 

of symmetry, when all recovery operations from the first group are part of recovery operations 

of the second. 

For example, family (13) with tetragonal symmetry is a subgroup of family (15) of cubic 

symmetry. The group 6 6( , )L l , 6P  of family (7) (symmetry of a regular hexagonal pyramid) is 

a subgroup of group 6 2 2

6 2

2 6 , 6
, ,

6

L L L
C

P P


 of family (9) (regular hexagonal prism). Family (4) is a 

subgroup of families (5), (6), (7), (8), (9), (10) for the same value q , etc. 

4. Characteristic dissymmetry of physical phenomena 

Let us now consider any point of the medium in any physical state. Symmetry at this point will 

necessarily be characterized by one of the groups from Table 1.6. 

We will formulate the following theorems: 

 
5 Detailed information can be found in treaties on crystallography. See also BRAVAIS (Bravais 1866), JORDAN 

(Jordan 1868), P. CURIE (Curie 1884, p. 418). 
6 Some minds may hesitate before applying to the medium in any physical state the classification which 

was for the first time determined from the point of view of pure geometry. We will note that we can bring all the 

reasoning, which is used for reestablishing groups, to the following form: let A, B, C be three triads of the 
orthogonal axes of coordinates, in which the system presents itself the same, let D be the fourth system 
of orthogonal coordinate axes, which is placed relative to C, just the same as B relative to A; D will continue 

to be a triad of the coordinate axes in which the system will present itself as in A, B, C. The way of reasoning does 
not prejudge anything about the nature of the system. 
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The characteristic symmetry of a phenomenon is the maximum symmetry consistent with 

the occurrence of that phenomenon. 

A phenomenon can occur in a medium that has the characteristic symmetry of the 

phenomenon or the symmetry of one of the subgroups of its characteristic symmetry.  

In other words, certain elements of the symmetry of the medium may, but do not have 

to, co-occur with certain symmetries of the phenomenon. What is necessary is that some 

elements of symmetry do not occur. It is dissymmetry what generates the occurrence 

of a phenomenon. 

It would be much more logical to name a plane of dissymmetry any plane that is not 

a plane of symmetry; the axis of dissymmetry each axis which is not the axis of symmetry, etc., 

and in general to provide a list of operations that are not recovery operations in a given system.  

It is these operations that indicate the existence of dissymmetry and, as a  consequence, the 

possibility of occurrence of some feature in the system. But in the groups considered, there is an 

infinite number of operations that do not lead to recovery of the system and in general a finite 

number of recovery operations; that is why it is much easier to provide a list of these last 

operations. 

We also see that when several phenomena of a different nature superimpose on each other 

creating one system, then the dissymmetries add up. Then, in the system only those elements 

of symmetry remain that are common to all phenomena considered separately (translator’s note: 

The above statement is known as the Principle of Superposition of Dissymmetries. 

Since certain causes produce certain effects, the elements of symmetry of the causes must 

find reflection in the elements of symmetry of the caused effects.  

When certain effects exhibit a certain dissymmetry, this dissymmetry must manifest itself 

in the causes that generated these effects. 

The opposite statements to the ones formulated above are not true, at least in practice, 

that is the produced effects can be more symmetric than the causes that induce them. 

Some dissymmetries of causes may not affect certain phenomena or at least have 

an impact too weak to take them into account, which boils down in practice to the same 

as if such an impact did not exist. 

It is interesting, from the point of view of physical phenomena, to consider separately the 

groups having an axis of isotropy. There are five such groups; we will denote them by (a), (b), 

(c), (d) and (e) (translator’s note: See also Figure S4 and Figure S5 in the translator’s 

Commentary). 

2

1

2

2

 ,

    E.g.:

,

( ) 2 ,

( ) ( ),

2
( ) , , ( )

( ) ,

Twisted Cylinder

Cut cone
Electric field

Cylinder,
    Body compressed
    in one direction

Rotating cylinder
Magnetic field

b L L

c L l P

L L
a C e

P P L l
d C

P



 




 



 
 
 

 
  

 
  

 
 
 
 

 

( )
Rotating
cut cone

L l 

 

Cylindrical group (a), the most symmetric, has elements of  the circular cylinder 

symmetry, i.e. a double axis of isotropy 2L , with an infinite number of 2-fold, double axes 
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2L  perpendicular to the main axis and passing through the center of shape of the system, 

a plane of simple symmetry P  of degree   orthogonal to the main axis, an infinite number 

of planes of simple symmetry 2P , of degree , containing the main axis, and the center 

of symmetry C . 

If an isotropic body is squeezed in a certain direction, it becomes anisotropic and has 

symmetry of the cylindrical group (a). It is known that the body squeezed in this way has optical 

properties such as crystals with the optical axis; symmetry (a) is exactly the maximum 

symmetry compatible with the occurrence of this phenomenon. Crystalline bodies with the 

optical axis have symmetries which are subgroups of symmetry (a). 

The remaining groups (b), (c), (d) and (e), with the axis of isotropy, are subgroups of the 

cylindrical group (a). 

Group (b) always has a double isotropy axis and 2-fold axes, but it no longer has a center 

or planes of symmetry. Group (b) is a holoaxial subgroup of group (a). Group (b) has symmetry 

of cylinder or fiber, twisted around its axis; (translator’s note: See Figure S4 in the translator’s 

Commentary). It is symmetry of the center of shape of a system created from two identical 

cylinders with axes in one line rotating around their axes with equal angular velocities 

in opposite directions. Torsional symmetry (b) does not have other symmetry elements except 

the axis of repeatability (axis of rotational symmetry); it has non overlayable dissymmetry 

(enantiomorphism), which is necessary for the occurrence of the phenomenon of ordinary rotary 

polarization of active bodies. It can also be said that symmetry (b) can be obtained if the cylinder 

is filled with a liquid having the property of rotary polarization. The crystalline form of quartz 

32L , 3 23( )L L  has symmetry of subgroup of group (b). 

Group (c) has an axis of isotropy and the one with the opposite sense of a different type  

( )L l  ; this axis is therefore no longer double (in other words, this axis is no longer equivalent 

regarding rotation operation). Group (c) still has an infinite number of symmetry planes 

containing an isotropy axis, but it already has neither plane of symmetry orthogonal to the axis, 

nor the center of symmetry, nor the 2-fold axes of the cylindrical group. It is symmetry of any 

point on the axis of the circular cut cone (translator’s note: See also Figure S4 in the translator’s 

Commentary). It is symmetry of force, velocity, field of universal gravitation; it is finally 

symmetry of electric field. All these phenomena are represented, very aptly from the point of 

view of symmetry, by an arrow. 

Let us consider, for example, the field of universal gravity. The material sphere M with 

the center at point O acts on the external point A by generating there a field of Newton’s 

attraction. If we assume that the material from which sphere M is made by itself does not 

introduce any dissymmetry, we can see that axis OA is the axis of isotropy such that every plane 

passing through OA is a plane of symmetry, and these are the only elements of symmetry 

passing through point A. This is symmetry of group (c). Hence, it follows that the Newtonian 

attraction field may occur in a medium with symmetry (c) or one of its subgroups; what is more, 

one cannot imagine that the symmetry of the medium could be greater than (c), because in such 

a case it would have to be the symmetry of the cylindrical group (a) or the symmetry of the 

sphere (19) see Table 1., and the field could not have a sense, and it would be the same with 

forces and velocities. If we put the material sphere at point A, then force will act on the matter. 

The body will then be able to go into a state of motion in direction AO, reach a certain velocity, 

2



Pierre Curie, Andrzej Ziółkowski (author of the translation and commentary) 

 

11 

and nothing in this process will disturb the symmetry of the system. Therefore, symmetry (c) 

at the same time represents the symmetry of force acting on ponderable matter and the 

symmetry of ponderable matter accelerated to a specific velocity. 

In order to determine the symmetry of the electric field, let us assume that this field 

is produced by two round plates made of zinc and copper facing opposite to each other, similarly 

as plates of the air capacitor. Consider a point between two plates lying on a common axis; 

we see that this axis is an axis of isotropy and that every plane containing this axis is a plane 

of symmetry. Elements of symmetry of causes should be found in the produced effects; 

therefore, the electric field is compatible with symmetry (c) and its subgroups. 

Group (a) of cylindrical symmetry and family (19) of spherical symmetry are the only 

groups containing subgroup (c). It is therefore unlikely that the electric field has a greater 

symmetry than (c). This last point can be shown rigorously if we assume that the force acting 

on the ponderable body has a group (c) as a characteristic symmetry, as we saw above. Let 

us assume that there is an insulated, conductive sphere charged with electricity, and then for 

some reason electric field appears. A force will start to act on the ball in the direction of this 

field. Dissymmetry of this action should be sought in the causes that induced it; since the force 

does not have an axis of symmetry perpendicular to the direction of its action, the system 

of charged sphere and field also cannot have this element of symmetry. However, the charged 

sphere considered separately from the field has isotropy axes in all directions ; Thus, the 

dissymmetry in question can only be caused by an electric field  which cannot have an axis 

of symmetry perpendicular to its direction. Therefore, the electric field cannot get cylindrical 

or spherical symmetry, and its characteristic symmetry is the symmetry of group (c). The 

symmetry of electric current and dielectric polarization is necessarily the same as the symmetry 

of the field that causes these phenomena. 

Piroelectric and piezoelectric phenomena are a new confirmation of previous conclusions 

on the characteristic symmetry of the electric field. The crystal of tourmaline, for example, 

polarizes electrically in the direction of its 3-fold axis when heated or squeezed in the direction 

of this axis. Gold, when heated or squeezed, in no way changes its crystalline symmetry, which 

is 3 3( , )3L l P , i.e. a 3-fold axis (and axis with the opposite sense of a different type), which 

is contained by three planes of symmetry; it is symmetry of subgroup (c) ( , )L l P   , so this 

symmetry is compatible with the occurrence of dielectric polarization along the axis. 

Finally, let us notice that the electric field causes the same optical phenomena in liquids 

that are obtained by squeezing in solids (Kerr phenomenon). The characteristic symmetry 

of these phenomena is cylindrical symmetry (a), of which group (c) is a subgroup; therefore, 

we see that the phenomenon of Kerr reveals only a part of the characteristic dissymmetry of the 

electric field. The phenomenon of electrical dilatation (Duter phenomenon) reveals only the 

dissymmetry of group (a). 

Group (d) has an isotropy axis and an axis with opposite sense of the other type ( )L l  ; 

thus, this axis is not a double axis with respect to repetition operation (translator’s note: here: 

rotation), but the system has a center of symmetry and a plane of symmetry of degree  

perpendicular to the axis. Therefore, axes L  and l   with opposite senses are symmetric 

relative to each other, and it can be said that the axis of isotropy is double by symmetry . The 

group has neither 2-fold axes nor symmetry planes containing the main axis of the cylindrical 

group (a). Group (d) determines the symmetry of the center of the shape of circular cylinder, 


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which rotates around its axis at some speed. Again, we must refer to this symmetry in the case 

of torque, angular velocity and magnetic field. 

Let us determine, for example, the characteristic symmetry of the magnetic field. For this 

purpose, consider the magnetic field which exists at the center of the circumferential circuit 

through which electric current flows; this field is directed perpendicular to the circumference 

plane. Let us determine the symmetry of the cause, i.e. the symmetry of the center of the circuit 

through which the current flows. First of all, we have an axis of isotropy perpendicular to the 

plane of the current flow circuit. Electric current is compatible with the existence of symmetry 

planes containing the direction of current flow; therefore, the circumference plane will be 

a plane of symmetry; electric current does not allow the existence of either a repetition axis 

or a plane of symmetry perpendicular to its direction. Therefore, there is no axis of symmetry 

in the plane of the circuit or planes of symmetry containing the axis of isotropy . Thus, the 

symmetry of the causes is a group of symmetry (d) ( ) / ,L l P C   . These elements of symmetry 

are compatible with the existence of a magnetic field passing through the axis of  isotropy, 

because the elements of symmetry of the causes are in the produced effects. 

We see that the magnetic field can have a plane of symmetry perpendicular to its direction. 

In addition, the magnetic field does not allow the existence of 2 -fold axes of symmetry 

perpendicular to its direction. To prove this, we will use the phenomenon of induction. Let 

us consider, for example, a straight wire moving at a certain velocity perpendicular to its 

direction. Such a system has a 2-fold axis in the direction of velocity. Let us assume that there 

is a magnetic field in a direction perpendicular to the direction of the wire and the velocity 

of motion; an electromotive force will appear in the wire. This phenomenon is incompatible 

with the existence of a 2-fold axis oriented in the direction of the motion, i.e. perpendicular 

to the wire. Dissymmetry of effects should be found in the causes; the necessary disappearance 

of the 2-fold axis of symmetry we were talking about may only come from the presence 

of a magnetic field; the latter cannot therefore have a 2-fold axis of symmetry perpendicular 

to its direction. (The same argument can be carried out by considering a circular circuit 

perpendicular to the magnetic field. It could be assumed that this circuit expands without 

changing its shape, causing an induction current.) 

Cylindrical groups (a) and spherical groups (19) have, as a subgroup, symmetry (d), but 

the existence in these groups of axes perpendicular between them shows that they are not 

appropriate to describe the symmetry of the magnetic field. The magnetic field is therefore 

compatible only with group (d) and its subgroups7. 

The phenomenon of magnetic rotational polarization additionally confirms this 

conclusion8. 

The magnetically polarized body has the same symmetry as the magnetic field.  

The phenomena of magnetic dilatation of iron reveal only the dissymmetry of the 

cylindrical group (a), of which (d) is a subgroup. 

 
7 P. Curie (Curie 1884, p. 418, 1893). Lord Kelvin conjectured that magnetization was caused 

by a deformation of a special medium. This deformation is simply a rotation, which in this very special medium 

causes the appearance of a  counteracting elastic moment. See: Translation of Lectures of Sir Thomson, Note 
of M. BRILLOUIN. This concept is completely consistent with the above symmetry. 

8 To properly deal with the problem of rotary polarization from the point of view of symmetry, it is 

necessary to introduce elements of symmetry characteristic for unlimited media that we did not talk about. For 
example, the body through which passes the circularly polarized light has a spiral axis of isotropy. 
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A large number of crystals are characterized by groups of symmetry, which are subgroups 

of magnetic symmetry, e.g. apatite 6 6 6( ) / ,L l P C , gypsum, iron chloride, or amphibole 

2 2 2( ) / ,L l P C . It is possible that these crystals were naturally magnetized as a result of their 

structure. I tried unsuccessfully to determine this polarization through experiments. 

Usually, the magnetic field is presented with an arrow; such a representation, often not 

leading to misunderstandings, is incorrect from a specific point of view of symmetry , because 

the magnetic field does not change as a result of mirror reflection relative to the plane 

perpendicular to its direction and changes its sense on the mirror reflection relative to the plane 

containing its direction. In the case of an arrow representation, it is exactly the opposite. 

Group (e) has only an axis of isotropy ( )L l  , not a double one. Group (e) is a subgroup 

common to four groups of symmetry (a), (b), (c) and (d); it has conjoined dissymmetries of all 

these four groups. Therefore, it is consistent with the existence of phenomena whose 

characteristic symmetry is any characteristic symmetry of the remaining four groups. The group 

has enantiomorphic dissymmetry. 

Five groups (a), (b), (c), (d) and (e) are related to each other like symmetry types of the 

same crystallographic system. If we borrow the language of crystallographers, then we will say 

that group (a) gives a full or holohedral symmetry of the cylindrical system. Group (b) 

corresponds to holoaxial hemihedry (slanted hemihedry or enantiomorphic hemihedry). Group 

(c) is hemimorphic hemihedry (hemihedry with unparallel walls). Group (d) is parahemihedry 

(hemihedry with parallel walls); Finally, group (e) corresponds to tetartohedry. (P8) 

Although each group contains an infinite number of recovery transformations, yet we can 

say that groups (b), (c) and (d) contain only half, and group (e) only a quarter of the recovery 

transformations of group (a). 

The models shown in Figures 3, 4, 5, 6 and 7 use the orientation of the arrows to define subgroups, 

with the main axis of the 4th degree, of groups (a), (b), (c), (d) and (e). 

Figure 3 [family (9) 4q = ] shows the subgroup of the cylindrical group (a); it is symmetry 

of a simple prism with a square base. Four symmetry planes pass through the main axis, two of the first 

type pass through arrows, the other two of the seconds type are bisectors of angles formed between the 

previous two. The locations of double 2-fold axes 2L  and 2L  and plane 4P  perpendicular to the axis 

are shown in the Figure. 

Figure 4 [family (8) enantiomorphic, 4q = ] shows a subgroup of torsional symmetry (b); it is 

symmetry of strychnine sulfate crystal. 

Figure 5 [family (7), 4q = ] shows a subgroup of symmetry of the electric field (c); there are four 

planes of symmetry passing through the axis: it is exactly the type of symmetry of the calamine crystal 

which is both piezoelectric and pyroelectric. 

Figure 6 [family (5), 4q = ] shows a subgroup of magnetic symmetry (d); it is symmetry 

of scheelite and erythrite crystals (translator’s note: CO3(AsO4)2 8H2O). 

Finally, Figure 7 [family (4) enantiomorphic, 4q = ] shows a subgroup of group (e), with 

an isotropic axis (penta-erythrite crystal). In Figure 7, the arrows at the bottom relate to the magnetic 

field dissymmetry, arrows at the top relate to the electric field dissymmetry. The combination of these 

arrows leads to the idea of torsional dissymetry, because the rotational motion around the axis in the 

direction of the bottom arrows – at the same time moving parallel to the axis in the direction of the top 

arrows – would describe the spiral. 
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5. Superposition of causes of dissymmetry in the same medium 

When two phenomena of a different nature coexist in the same medium, their dissymmetries 

add up. If we superimpose the causes of dissymmetry of two of the three groups (b), (c), (d), 

in such a way that the isotropy axes coincide, we will receive a group (e), because the axis 

of isotropy will be the only element of symmetry common to the two superimposed groups. Or, 

to put it differently, group (e) has conjoined dissymmetry of these three groups. So, putting 

together, as we start calling it, the causes of the dissymmetry of two out of the three groups (b), 

(c), (d), we will obtain the characteristic dissymmetry of the third group. 

Suppose, for example, that we simultaneously apply to the body the electric field (c) and 

the magnetic field (d) with the same direction, then only the axis of isotropy will remain; the 

presence of an electric field excludes the existence of a center and a plane of symmetry 

perpendicular to the axis, and the presence of a magnetic field enforces the disappearance 

of symmetry planes containing the axis. Thus, the symmetry of the system is symmetry (e) 

which is a subgroup of symmetry (b): we will have torsional dissymmetry in the body. If we 

take, for example, an iron wire and magnetize it along its length, then an electric current passing 

through it will cause the wire to twist (Wiedemann’s experiment). 

Perhaps it is possible to create a medium capable of exhibiting torsional polarization 

of active bodies by applying an electric field and a magnetic field in the symmetric body. 

At least this would not be contradictory to the conditions of symmetry . In the direction of the 

axis, a superposition could occur of the phenomenon of magnetic rotational polarization (i.e. 

change of sense along with the change in the direction of light propagation ) and the 

phenomenon of ordinary rotational polarization. Perpendicular to the axis, there could 

be obtained a pure phenomenon of ordinary rotational polarization. Such a medium with 

enantiomorphic symmetry would perhaps still enable the realization of certain dissymmetric 

chemical reactions or the separation of the right and left substances in a racemic mixture or even 

depositing from a solution of substances in a unique form with symmetric molecules, such 

as sodium chlorate which usually deposits in the form of dissymmetric mixed right and left 

crystals. 

On the contrary, the electric field or the magnetic field acting individually may not cause 

a dissymmetric reaction, because these phenomena are consistent with the existence of a plane 

of symmetry. 

Let us assume that we will superimpose a torsional dissymmetry (b) and magnetic 

dissymmetry (d), we will again receive symmetry (e) which is a subgroup of the symmetry of the 

electric field (c). 

Let us take a piece of wire, magnetize it and twist it. When the twist occurs in the wire 

through which the electric current flows, an electromotive force appears if it is arranged 

in a closed circuit (Wiedemann’s experiment). 

Symmetry conditions show us that it may happen that bodies with dissymmetric 

molecules (capable of ordinary rotation) will be dielectrically polarized when placed 

in a magnetic field. 

Finally, let us assume that we apply torsional dissymmetry (b) and electric field (c); 

we will again have symmetry (e) which is a subgroup of magnetic symmetry. The iron wire, 

through which the electric current flows, is magnetized in the direction of its length when it is 

twisted (Wiedemann’s experiment). 
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The conditions of symmetry allow us to imagine that the body with dissymmetric 

molecules maybe will undergo magnetic polarization after placing it in the electric field. 

Hall Effect 

Let us apply an electric field (c) and a magnetic field (d) in the same medium, with the direction 

of both fields at a right angle to each other. In this situation, the only element of  symmetry 

common to both fields is the symmetry plane containing the direction of the electric field and 

perpendicular to the direction of the magnetic field. Therefore, for the entire symmetry we will 

have plane P [group 4]. 

On both sides of the plane, the phenomena will have to be symmetric , but in the plane, 

the symmetry no longer indicates the existence of any constraints. Consider, for example, three 

orthogonal axes and a rectangular metal plate perpendicular to axis O x which passes through 

the center of its shape, and whose sides are parallel to the other axes O y and O z. If the current 

flows through the plate along axis z, then it cannot be an electromotive force along axis y, 

because plane z O x is a plane of symmetry for the electric current and the plate. If there is no 

electric current, but along axis x perpendicular to the plate there is a magnetic field, then there 

can be no current along axis y, because axis x is 2-fold axis for the field and the plate, and 

furthermore there is a center of symmetry. If we now have both a magnetic field along axis x 

and electric current along axis z, then the axis, the center, and the plane of symmetry disappear 

and nothing obstructs anymore, from the point of view of symmetry, the electromotive force 

to appear along axis y. 

The theory of heat propagation and electricity in crystalline bodies (Stokes, Thomson, 

Minnigerode, Boussinesq) shows that for certain crystalline media, the so-called rotation 

coefficients must be taken into account. This applies to crystals from family (5) ( ) /q q qL l P  

and (6) ( ) /q q qL l   and their subgroups (1), (2), (3) and (4). These crystals have, at most, one 

axis of degree q normal to the plane of simple symmetry or alternative symmetry of degree q, 

where q is any integer number. The magnetically polarized body has symmetry (d) ( ) /L l P    

which is the limiting case of groups (5) and (6) for q = . All crystals that, according to the 

theory, can have rotation coefficients have as a type of symmetry one of the subgroups of 

magnetic symmetry. 

The theory built for crystalline bodies perfectly applies for magnetic symmetry, and the 

existence of rotational coefficients explains all the peculiarities of Hall’s phenomenon, without 

the need to introduce into the theory of conductivity anything other than the symmetry of the 

field. 

If the electricity is to come to the center of the metal disk located perpendicular to the 

magnetic field and if this electricity is collected uniformly on the edges of the disk , then the 

lines described by the electric flux must be spirals (Boltzmann)9. 

 
9 It is very interesting that the crystals for which the theory of Stokes was created turned out to be refractory, 

whereas C. SORET unsuccessfully studied the impact of rotation coefficients in gypsum on thermal conductivity. 
The Hall phenomenon was observed only in the case of metals, and gypsum is a dielectric. Rotation coefficients 

would be perhaps perceptible upon using a crystallized metallic body exhibiting the necessary dissymmetry, but 
I do not think that we currently have the right substance to  conduct an experiment. 

The theory of thermal conductivity in crystals is presented in the latest article by C. SORET (Soret 1893, 

pp. 241-259). Lord KELVIN was the first to notice that Hall’s phenomenon provided evidence of the existence 
of rotational coefficients (Thomson 1882).  
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Pyroelectric and piezoelectric phenomena 

Pyroelectric crystals by necessity have the symmetry of the subgroup of the electric field 

symmetry group, because the heating, by conjecture homogeneous, does not introduce any 

dissymmetry by itself . Piezoelectric crystals are more numerous than pyroelectric crystals.  

In fact, they include all these pyroelectric ones and also crystals that under the influence 

of mechanical load assume only the symmetry lesser than the symmetry of the electric field. 

For example, the blend (tetrahedral crystal) and quartz have symmetries that are not subgroups 

of the electric field. The quartz has symmetry 32 L , 2 23( )L L , a double 3-fold main axis and 

three 2-fold axes, non double perpendicular to this axis. For example, by squeezing along the 

2-fold axis, cylindrical dissymmetry (a) is added to this of quartz; everything that remains 

as elements of symmetry is 2 2( )L L , a 2-fold non double axis which can become the direction 

of electrical polarization. 

It can also be demonstrated in the same way that by squeezing in the direction 

perpendicular to both the 2-fold axis and to the 3-fold axis, polarization will be created along 

the 2-fold axis and that the coefficients that affect the characteristics of these two modes 

of polarization generation are equal and have opposite signs. So, we can predict some special 

features of this phenomenon; but these symmetry conditions are not the only ones that occur 

in the general theory10. 

6. Relationships between characteristic symmetries of different media 

We thought that the non-crystalline material with no rotational force does not introduce by itself 

whatever dissymmetry into the system; we adopted by default the same assumption for the 

medium which fills the empty spaces of the material. This quite natural, but completely heuristic 

assumption is necessary. It shows well that we cannot get the concept of absolute symmetry; 

we must arbitrarily choose symmetry for a specific medium and deduce the symmetry of other 

media. What is more, this relative symmetry is the only one that interests us. For example, if the 

whole system moves at a certain velocity and we consider in it a certain body A, then in general 

it will be useful to us to know the symmetry of body A relative to the system without taking 

into account the conjoined dissymmetry arising from the motion of the entire system. 

Let us assume that in electricity we know only the general phenomena of static electricity, 

dynamic electricity, magnetism, electromagnetism and induction, then nothing will tell 

us exactly what kind of symmetry should be assigned to the electric field and the magnetic field. 

For example, for the magnetic field, we could choose symmetry (c) (which we assigned above 

to the electric field) and, reasoning as we did, we necessarily would have to take as symmetry 

of the electric field group (d) (which we assigned above to the magnetic field). In such a system, 

there would be no absurdity or contradiction with our initial hypothesis on total symmetry 

of matter. 

General phenomena of electricity and magnetism, therefore, show us only the relationship  

between the symmetries of the electric field and the magnetic field, so that if we accept (c) for 

the symmetry of one, we must accept (d) for the symmetry of the other and vice versa. 

To remove this indeterminacy, it is necessary to introduce other phenomena, electrochemical 

 
10 The complete general theory of piezoelectric properties of crystals was developed by W. VOIGT (Voigt 1890; 

Riecke, Voigt 1892).  
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phenomena or contact electricity, pyro- or piezoelectric phenomena and even Hall phenomenon 

or magnetic rotational polarization. 

The dimensions of electrical and magnetic quantities give an example of indeterminacy 

quite comparable to the one that we just cited for symmetry of electric and magnetic media. 

General phenomena of electricity and magnetism similarly are not able to remove this 

indeterminacy; to eliminate it, other phenomena should be taken into account, e.g. electrochemical 

phenomena11. 

7. Concluding remarks 

The characteristic symmetries of phenomena are undeniably the subject of general interest. 

From the point of view of applications, we see that the conclusions that we can draw from the 

reflections on symmetry are of two types. 

The first are some negative conclusions; they are a response to an undeniably true 

statement: there is no effect without a cause. The effects are the phenomena which always 

require some dissymmetry in order that they can occur. If this dissymmetry does not exist, then 

the phenomenon is impossible. This often stops us from wandering in search of  phenomena 

impossible to realize. 

Reflections on symmetry still allow us to formulate a second kind of conclusions, those 

of a positive nature, but which do not give the same certainty as those of a negative nature. They 

correspond to the statement: there is no cause without any effects. The effects are phenomena 

that may occur in a medium showing some dissymmetry; we have valuable hints here 

to discover new phenomena, but these predictions are not accurate predictions, such as those 

of thermodynamics. We have no idea about the order of the magnitude of the anticipated  

phenomena; we also only have an imperfect idea of their exact nature. This last remark shows 

that we must avoid drawing categorical conclusions from negative experience.  

Consider, for example, a tourmaline crystal which has symmetry that is a subgroup 

of electric field symmetry. We come to the conclusion that such a crystal can be electrically  

polarized. Let us place the crystal in the electric field with the axis at 90° to the field. The 

polarization does not manifest itself in any way, there is no noticeable torque acting on the 

crystal and one could think that the crystal is not polarized or if the polarization exists, it is 

smaller than the one that could be measured. However, the polarization exists and for it to 

appear, the experiment should be modified, e.g. through homogeneous heating of the crystal 

which does not change anything in its symmetry. 
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Commentary to the English translation 

Andrzej Ziółkowski 

1. Footnotes to the main text 

P1. The definition of symmetry outlined by Pierre Curie in several paragraphs below is neither 

clear nor precise. It can probably be best described as intuitive. On the one hand, it refers to the 
classic definition of symmetry, limited to geometric objects (figures, solids), having its source 
in ancient Greece. On the other hand, Pierre Curie creatively wipes the trail here to a very 
general contemporary understanding of the concept of symmetry as a universal property 

of comprehensive application. The work initiated by Pierre Curie was successfully completed 
by German mathematician Hermann Weyl who was the first to formulate the contemporary 
definition of the concept of symmetry as a certain universal philosophical category 
characterizing the organizational structure of all systems existing in the universe (Weyl 1952, 

p. 3): 

[…] Starting with a slightly unclear concept of symmetry = harmony of proportions, 
in these four lectures gradually, first, it is developed the geometric concept 
of symmetry… to finally get to the general idea underlying all these special 
systems, namely the invariability of  configuration of elements when subjecting 
them to a certain group of automorphic transformations. […] 

According to Weyl, the quintessence of symmetry is property of the invariance of the object 
(of any kind) when subjecting it to a certain set (group) of automorphic transformations. 

A general, very capacious contemporary definition of symmetry which the author of the 
present Commentary would formulate is as follows: 

Definition of Symmetry 

Symmetry is the invariance (stability, durability, constancy, isotropy) of some 

feature (geometric, physical, biological, informational, etc.) of an object (an object 

can be a geometric system, a material object, a natural phenomenon, a physical law, 

a social relation, a process running in time, a physical field, etc.) after subjecting 

it to transformations from a certain set (transformations can be shifts, mirror 

images, rotations, changes in order, etc.) with respect to which the symmetry is 

considered. 

As shown by this definition, infinitely many different types of symmetry exist, depending 

on the category of objects considered, the type of object features analyzed and the types 

of transformations which the objects may be subjected to. With respect to some feature, 

an object may be simultaneously symmetric due to one type of transformation and dissymmetric 

due to another type of transformation. With respect to another feature, the same object may yet 

be symmetric relative to both previously considered types of transformations . The feature 

of symmetry is therefore a very comprehensive and rich concept. 

A precise mathematical definition of symmetry can be found in Appendix B entitled 

Symmetry, in the book of Jan Rychlewski, Dimensions and Similarity (Rychlewski 1991, 

pp. 171–184). In the Appendix, a concise outline of the general formal language of symmetry 

(quantitative model of symmetry) is presented, applicable for the examination of any situation 

in which the concept of symmetry occurs. The key elements of the mathematical apparatus 

of algebraic theory of symmetry defined in Appendix B and discussed in examples are the 
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concepts of: -sets, orbits, orbit markers, invariants and invariant functions. The algebraic 

theory of symmetry is a versatile tool enabling the analysis of all types of symmetry. 

In Appendix B, important results of the symmetry theory are briefly presented, such as the 

ornament principle (expressing the deepest property of complex symmetric objects in the 

simplest way), the representative theorem for symmetric objects, the theorem on the symmetry 

of causes and effects of physical laws, and the theorem on the invariant extension of any 

function. 

The full mathematical theory of symmetry was developed in Jan Rychlewski’s Symmetry 

of causes and effects (Rychlewski 1991) of which Appendix B is a very compact synopsis and 

motivation. 

A mathematically precise contemporary definition of material symmetries, along with 

definitions of the necessary related concepts, is recalled in the Final Comments section of the 

present Commentary. 

P2. In the light of the modern definition of symmetry, it can be guessed that by recovery 

operations the author understands, as for the essence, operations leaving a given system (object) 

unchanged, which are nowadays called symmetry operations. However, in all his work, the 

author uses the concept of recovery operations in a broader sense, namely, that of certain sets 

of operations of a special type (e.g. rotations, mirror reflections, etc.), and also subsets 

of specific operations that do not lead to a change (e.g. of shape) of a given object (e.g. rotations 

by 90o), i.e. actual symmetry operations. For this reason, it was decided to use a literal 

translation of the original phrase, i.e. ‘recovery operations’, in the belief that this would prevent 

misunderstanding. 

P3. From the broader context, it can be guessed that by displacement the author understands 

not only classic linear displacement, but also angular displacement, i.e. rotations. Thus, 

by recovery (symmetry) operation of the first type the author understands operation of the linear 

displacement or angular displacement, i.e. rotation. Also from the context, one can guess that 

by the recovery operation of the second type the author understands the mirror reflection 

operation. The author’s definition of a mirror image operation as ‘…symmetric transformation 

in the right sense…’ is, in the light of the modern definition of symmetry, inaccurate. 

It is worth noting that the difficulties the reader may have with the correct understanding 

what types of symmetry are discussed originate apparently from a certain methodological error 

which is frequent even nowadays when defining various types of symmetry. Namely, 

transformations of a symmetry element, relative to which symmetry of the object is examined 

(e.g. inversion axis, alternating axis, mirror reflection of triad of the coordinate axes, etc.), are 

discussed rather than transformations of the object the symmetry of which is examined when 

submitting it to a specific type (group) of transformations. A substantively correct, 

contemporary definition of symmetry gives a hint on how to ensure precision and clarity 

in determining the type of symmetry under examination. Following it, one should talk about the 

inversion, mirror reflection, twisting or change of order of an object whose symmetry is being 

examined, and not about the inversion, mirror reflection, etc. of the symmetry element relative 

to which a given transformation operation possibly leading to symmetry is executed. Even if the 

latter is ‘simpler’ due to, for example, brevity of expression. 

P4. As a standard, we imagine a rotational axis of symmetry as a straight line (line segment) 

around which the rotation is made. However, there are situatitons (shapes of objects) when the 


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up-down orientation of the item relative to the rotation axis is important. A typical example 

is that of a pyramid with a polygon base mentioned by Pierre Curie. If the tip of the pyramid 

points up and the pyramid is rotated around its axis, then its shapes will coincide at some 

specific angles. Similarly, if the tip of the pyramid points down and the pyramid is rotated, then 

its shapes will also coincide at specific angles. However, at no rotation angle of the pyramid 

around its axis will the shape of the pyramid with the tip up coincide with the shape of the 

pyramid with the tip down. To be able to distinguish and describe such situations, the concept 

of polar axes was introduced, i.e., axes whose sense relative to the object examined in terms of 

its symmetry is important. Pierre Curie says that such axes are of a ‘different type’ even though 

they actually concern the same axes and the same transformation types, e.g. rotations. The 

difference between axes qL  and ql  is graphically illustrated in Figure S1. 

L∞

l∞≠L∞
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Fig. S1. Graphic illustration of the difference between axes of symmetry qL  and ql . 

In crystallography, also today, many concepts of various ‘types’ of symmetry axes are 

used, e.g. inversion axis, alternating axis, roto-inversion axis, etc. The difference between the 

first two is graphically illustrated in Figure S2. 
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Fig. S2. Illustration of the principles of constructing the inversion and the alternating axes from 

the original (primary) axis of symmetry. 

P5. The text often uses two names of the types of symmetry axes; these are the 2-fold axis (axe 

binaire) and the double axis (axe doublé) which can be easily mistaken. 

The 2-fold symmetry axis means that when an object is rotated around it by 1800, the original 

shape and the shape after rotation coincide (the shape of  the object is invariant). The double 
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axis of symmetry means that when an object is turned upside down relative to it, rotated by 1800, 

the original shape and the shape after rotation coincide; see also Figure S1. Thus, completely 

different sets of recovery (symmetry) operations are associated with the 2-fold axis and the 

double axis. The literature often mentions that upon changing the sense of the axis, the object 

remains invariant. This expression is in principle incorrect, although illustrative, because it is 

the object whose symmetry is examined that is subjected to transformations in order to find out 

whether it is symmetric when subjecting it to a specific type of transformation. 

It is also worth noting that the frequently used term ‘repeatability’ means rotation 

operation around a certain axis of symmetry. 

P6. One of the basic resources used in crystallography is the widely accepted Table of 32 

crystallographic classes containing a list of all possible symmetry point groups of crystals (i.e. 

symmetries with respect to such elements of symmetry as center of symmetry, plane of symmetry 

and symmetry axis). The admissible transformations are three-dimensional rotations, inversions 

and mirror reflections; whereas in accordance with the theorem on crystallographic restrictions, 

crystals can only have 2, 3, 4 and 6-fold symmetry axes. Crystallographic classes were divided 

into seven crystallographic systems, with the division being based on sets of symmetry groups 

with one or more common elements of symmetry. Naturally, this is not the only possible 

classification and division. Presented in Pierre Curie’s work, Table 1 makes a division 

of a certain set of objects analogous to the above- described standard division of crystals into 

classes and families with respect to elements of symmetry and groups of symmetry of these 

objects. However, the set of objects Curie considered is qualitatively broader than crystals 

(it contains physical fields), and the set of symmetry elements and the set of symmetry 

transformations considered are also broader. 

By analogy, Curie’s crystallographic class corresponds to the standard crystallographic 

system, while Curie’s family corresponds to the standard crystallographic class. 

The classic Table of 32 crystallographic classes concerns static geometric systems and 

discrete transformation operations that lead to invariance, i.e. in relation to which systems are 

symmetric (static crystallographic shapes are recovered through the discrete value of the angle 

of rotation around the axis of symmetry, etc.). Table 1. includes geometric systems in motion – 

kinematic, e.g. rotating, as is the case with a magnetic field or a sphere with vortical fluid. 

In Table 1., Curie takes into account continuous transformations that can lead to symmetry 

(invariance) of objects (rotation by any angle, even infinitely small, recovers shape). 

Continuous symmetry transformations lead to the concept of limiting groups of symmetry. The 

heuristic approach and non-standard elements contained in Table 1 proved to be creative and 

cognitively inspiring, and initiated the process of generalizing the concept of symmetry which 

led to the understanding of its deepest essence and developing a contemporary definition 

of symmetry formulated half a century later by Herman Weyl. 

In order to highlight the relations between standard crystallographic systems and the 

symmetry classes distinguished by Pierre Curie, an extra column was added to Table 1. by the 

translator with specific international denotations of Curie’s families, i.e. those of Hermann-

Mauguin (H-M) classification. Table 3.2.1.3 (the 47 crystallographic face and point forms, 

names, eigensymmetries, and occurrence in the crystallographic point groups (generating point 

groups)), Figure 3.2.1.1 (the 47 crystal forms that crystals may take) and Table 3.2.1.4 (names 
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and symbols of 32 crystal classes) presented in the work of Hahn, et al. (Hahn 2016) were very 

helpful in establishing these denotations. 

P7. Enantiomorphic figures – from the Greek enantios meaning ‘opposite’. Two objects, e.g. 

flat shapes and/or geometric solids, are enantiomorphic when they are mirror images of each 

other (are formed by a mirror reflection). As this definition implies, there can be only two 

objects (figures) which are mutually enantiomorphic. It also follows from the definition above 

that all enantiomorphic objects are congruent objects (they have the same size and shape). 

The feature of enantiomorphism determines the way in which two enantiomorphic objects 

are formed, and thus how they are related to each other, but it does not determine whether 

or how they are symmetric. Enantiomorphic figures may or may not be symmetric due to some 

set of transformations other than mirror reflection. The feature of enantiomorphism does not 

specify (says nothing about) whether two flat enantiomorphic figures are right- and/or left-

handed figures or whether two three-dimensional enantiomorphic objects (e.g. orthogonal triad) 

are right- and/or left-handed objects. Determination whether enantiomorphic objects are 

symmetric (superimposable on each other) due to rotation transformations requires further 

examination. In crystallography or mineralogy, two crystallographic systems may or may not 

be symmetric due to a set of rotations in three-dimensional space. In order to indicate that some 

enantiomorphic crystallographic systems are not symmetric due to rotations (they are not 

superimposable on each other due to some set/class of rotations), facets are often placed on the 

drawings of such systems to illustrate the type of dissymmetry. 

Dissymmetric enantiomorphic objects (non superimposable on each other by rotation) are 

called chiral objects – from the Greek word kheir meaning ‘hand’). The concept was proposed 

by Kelvin in 1894: 

‘…I call any geometric figure or group of points, “chiral”, and say that it has 

chirality, if its image in a plane mirror, ideally realized, cannot be brought 

to coincide by itself…’, (Lord Kelvin, 1894). 

The study of various types of chiral objects is currently a subject of very lively scientific 

interest, e.g., in pharmacological chemistry, since chiral molecules with the same chemical 

composition can exhibit radically different effects on the human body depending on their 

handedness (three-dimensional configuration of the internal structure). The contemporary 

definition of symmetry indicates that one should be careful when qualifying objects as chiral. 

For example, flat models of the left and right ‘hands’ obtained by mirroring them against 

a mirror plane set perpendicular to the model plane are chiral due to two-dimensional rotations 

limited to the model plane in which these models lie. By rotating them only in the model plane 

(two-dimensional rotations), they cannot be superimposed on each other to coincide. However, 

these models are not chiral due to three-dimensional rotations, e.g. transforming the ‘left’ 

model by rotating it by 1800 going outside the model plane allows this model to be 

superimposed on the ‘right’ model to coincide, so the models are then superimposable, 

cf. Figure S3. 
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Rotation of the object in the model plane (2D) does 
not allow recovery of the original shape, but rotation 
by 1800 going outside the model plane (3D) allows 
recovery of the original shape.
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Fig. S3. Graphical illustration of the ambiguity of the definition of the chirality of an object, in the case of two-

dimensional objects, due to the possibility of bringing the mirror image (Kelvin definition) into conformity with 

the original. Depending on the mutual alignment of the mirror plane and model plane and the class of admissible 

recovery (rotation) transformations, the same object can be qualified as chiral or not. 

The mutual orientation of the mirror plane and the model plane is also important. When the 

mirror image plane is parallel to the model plane, then the flat model of the hand and its mirror 

image can be brought to coincidence by simple translation, so according to Kelvin’s definition, 

such objects are not chiral. 

Let us further consider a coordinate system in three-dimensional space (triad of versors). 

When the versors are indistinguishable, e.g. all are in black, then a person who has not seen how 

two triads were formed will not be able to tell their left- or right-handedness, and therefore 

determine whether they are chiral or not. This is because two orthogonal triads always can 

be superimposed on each other to coincide by rotation in three dimensions. However, when the 

individual versors are distinguishable, for example due to color differences, then it will be 

possible to determine whether two triads are chiral (one is right- and the other is left-handed), 

because it will be either possible to superimpose all versors by three-dimensional rotation so that 

they coincide in geometric position and colors (non-chiral triads) or not (chiral triads). 

The examples considered above show that the deepest essence of chirality is not in the 

geometrical characteristics formulated by Lord Kelvin as its defining distinguishing feature, but 

in some permutational (ordering) features of the internal structure  of an enantiomorphic pair. 

It seems to be natural to extend the concept of chirality to include the dissymmetry of the 

ordering of any two systems built with the same components. Take, for example, isomers 

of a molecule with four different types of ligands. We will have possibility of four (four!) 

factorial orders of the internal structure of such a molecule. In general, two isomers with 

a specific ordering of structure — in view of some property — can be dissymmetric 

or symmetric with respect to a certain pair of indices that characterize the internal structure, and 

therefore exhibit chirality or not. A similar situation occurs in the case of internal symmetry 

(with respect to a pair of indices) of the components of the fourth-order tensor. 

The present discussion suggests the need and possibility of constructing a more precise 

and general new definition of chirality, in which the existence of dissymmetry of a tensor 

characterizing the internal structure of an object, e.g. with respect to a pair of specific indices, 

should be adopted as a defining indicator of chirality. 

The above observation also provides a hint as to how a rational categorization and naming 

of chiral objects can be introduced using the concept of internal (permutational) symmetry 

of tensors. 
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The property of chirality and the various physico-chemical effects associated with 

it provide spectacular experimental evidence of the validity of the statement formulated by 

Pierre Curie that it is dissymmetry that generates the occurrence of a phenomenon. 

P8. The equivalents between the contemporary international denotations of Hermann-

Mauguin’s (H-M) convention and Friedel’s convention (using the concepts of Holoedria, 

Hemiedria, Tetartoedria, etc.) can be found, for example, in Table 3.2.1.4 of Hahn’s et al. report 

(Hahn, 2016). 

2. Final Comments 

It is worth pointing out a few reference works that can facilitate understanding and help promote 

the use of the results of Pierre Curie’s work for one’s own needs. 

Free Textbook for College-Level Mineralogy Courses (Anonim 2022) and Mineralogy, 

Lecture Notes (Nelson 2017) both provide clear and concise information on the current state 

of knowledge, contemporary crystallographic nomenclature, as well as graphic illustrative 

materials, e.g. three-dimensional models of various crystallographic shapes, photos of minerals 

and numerous other very helpful information. 

Other very helpful descriptive and graphical explanations of terms and concepts relating 

to symmetry, including the concept of limiting point groups introduced by Pierre Curie, as well 

as non-standard, innovative kinematic elements defining the limiting point groups of symmetry, 

can be found in an article by A.V. Szubnikow (Szubnikow, 1956, English translation (1988)). 

Figures 1 and 2 from Szubnikow’s article with a geometric interpretation and a schematic 

representation of limiting point groups were adapted in Figures S4 and S5. The following 

equivalence relations apply between the denotations of limiting axial groups of symmetry 

introduced by Pierre Curie in Section 4 of the translated work and the nominal Hermann-

Mauguin (H-M) international denotations: ( ) /a mm , ( ) 2b  , ( )c m , 

( ) /d m , ( )e  . The symmetry of the electric field is  (a stationary cone), the 

symmetry of the magnetic field is  (a rotating cylinder). The symmetry  denotes 

isotropy (a stationary sphere). 

All limiting symmetry groups contain the same common element of symmetry, i.e. the axis 

of symmetry of an infinite degree. 

∞m ∞2∞/m

∞∞m∞∞

∞ ∞/m m

 
Fig. S4. Geometric interpretation of the limiting point groups of symmetry; an adaptation of Figure 1 from the work 

of Szubnikow (Szubnikow, 1956, English translation (1988)). 
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The elements of symmetry of limiting symmetry groups are as follows: the group of a rotating 

cone ( )  has a symmetry axis of an infinite degree, the group of a stationary cone ( )m  has 

a symmetry axis of an infinite degree and an infinite number of planes of symmetry containing 

the axis of symmetry, the group of a rotating cylinder ( / m ) has a symmetry axis of an infinite 

degree, one transverse plane of symmetry and a center of symmetry, the group of a twisted 

cylinder ( 2)  has a symmetry axis of an infinite degree and an infinite number of transverse 

2-fold axes of symmetry, the group of a stationary cylinder ( / mm ) has a symmetry axis 

of an infinite degree, an infinite number of transverse and longitudinal planes of symmetry, 

an infinite number of transverse 2-fold axes of symmetry and a center of symmetry, the group 

of a sphere with no symmetry planes and no center of symmetry ( ) has an infinite number 

of symmetry axes of an infinite degree; it is a sphere with all diameters twisted to the right 

or left; the group of a stationary sphere ( m ) has an infinite number of symmetry axes of an 

infinite degree, an infinite number of symmetry planes, and a center of symmetry. 

It is worth noting that attempts to describe the symmetry of crystallographic systems using 

second-order symmetric tensors, as encountered in crystallographic literature, cannot 

be successful in the light of current knowledge. 

∞m ∞2∞/m

∞∞ m∞∞

∞ ∞/m m

 

Fig. S5. Schematic graphical illustration of limiting point groups of symmetry; adaptation of Figure 2 from the 

work of Szubnikow (Szubnikow, 1956, English translation (1988)). 

A correct tensorial description of the symmetry (anisotropy) classes of elastic properties 

of three-dimensional (3D) materials considered in the mechanics of continuous media, i.e. the 

external symmetries of Hooke’s tensor with respect to the group of orthogonal tensors Q  

T
( I)Q Q =  describing rotations and mirror reflections, can be found in the work of (Kowalczyk-

Gajewska, Ostrowska-Maciejewska 2009). Equivalence (correspondence) relations between 

the classes of symmetry of crystallographic systems and the classes of symmetry of linear-

elastic materials (Hooke’s tensor symmetry classes) can be identified, see Table P1. 

The material symmetries of elastic properties of two-dimensional (2D) materials can 

be correctly described using second-order symmetric tensors. Such a description can be found 

in the work of (Blinowski et al. 1996). 

Sandra Forte and Maurizio Vianelllo (Forte, Vianello 1996) proved in 1996 that there 

exists a maximum of 8 classes of symmetry for a linearly elastic material (Hooke’s tensor). 

It should be remembered that Forte and Vianelllo’s findings are valid if and only if the tensor 
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describing the material properties — here: the Hooke’s tensor — has the following internal 

symmetries:  

1234 2143 3412 (~ )ijkl jikl klijH H H     = = = =H H H  , , , 1,2,3i j k l = , where 
ijklH  denote 

the components of the Hooke’s tensor in any fixed tensorial basis. 

Table P1. Equivalence relations between classes of symmetry of crystallographic systems and classes of symmetry 

of elastic properties of linearly elastic materials (external symmetries of the Hooke’s tensor). 

No. Cl. of symmetry of 

crystallo-graphic 

system 

No. Class of material 

symmetry 

Notes 

1. triclinic 1. anisotropy  

2. monoclinic 2. monoclinic  

3. orthorhombic 3. orthotropic  

4. tetragonal 4. tetragonal  

5. 
trigonal 

(rhombohedral) 

 

 

5. trigonal 

In recent studies, the symmetries 

of trigonal and hexagonal systems 

are increasingly adopted as a single 

crystallo-graphic system (hexagonal). 

6. hexagonal  –  

 

– 

 

 

 

6. transversely isotropic 

Transversely isotropic (cylindrical) 

symmetry is, in the nomenclature 

introduced by Pierre Curie, the 

limiting symmetry of rhombohedral 

system. The classical systematics 

of crystallographic systems does 

not contain this symmetry. 

7. cubic 7. cubic  

 

– 

 

8. isotropy 

Isotropy is the limiting symmetry 

of a  cubic (regular) system, absent 

in the classical systematics of 

crystallographic systems. 

The material model, e.g. the Hooke’s tensor, should not be confused with a real body, e.g. 

crystalline material. The Hooke’s tensor is a model of linear-elastic behavior and its symmetries 

reflect the symmetries of such behavior. However, the Hooke’s tensor is used to model the 

behavior of crystalline materials and, for example, amorphous materials, as long as the behavior 

of a given material in a certain range of loadings can be considered as linear and elastic with 

a good approximation. The division into crystallographic systems is based on identification 

of certain common elements of symmetry characterizing the internal structure of crystalline 

materials. Nothing prevents the symmetries of the Hooke’s tensor from coinciding to some 

extent with the symmetries of crystallographic systems. However, it can be expected that the 

symmetries of the Hooke’s tensor will be broader (richer) than the symmetries 

of crystallographic systems (from the point of view of  a linear-elastic behavior), because the 

Hooke’s tensor generally enables a description of a wider range of materials than just crystalline 

materials. Reality confirms this, because crystallographic systems do not include Curie’s 

limiting symmetries, while the symmetries of the Hooke’s tensor do. 
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3. Mathematical definitions of symmetries used in materials research 

Below are recalled some mathematically precise, modern definitions of  internal symmetries 

(due to permutations of indices) and of external symmetries (due to rotations and mirror 

reflections in three-dimensional space) of a set of tensors of order p, along with definitions 

of related concepts. These types of symmetries are currently most often used to characterize the 

symmetry of material properties in their tensorial description. More information on this subject 

can be found in Janina Ostrowska-Maciejewska’s book (Ostrowska-Maciejewska 2007). 

Definition S1. A permutation operation    on tensor T  is a linear mapping defined with the 

following rule 

12... 1 2 12... (1) (2) ( ): ... ... ,

(1), (2), ... , ( ) , , ,

p p p p

p

T T

p

   

    

 =    →  =   

    

T T e e e T e e e

T T
 (S.1) 

where (1), (2), ... , ( )p    is a preset permutation of the first p natural numbers 1, ... , p , 

and 1,2,..., pT  are components of tensor T  of p-th order in the tensorial basis 1 2 ... p  e e e . 

A permutation of a tensor means change in the order of components of its tensorial basis. 

The permutation operation can be interpreted, in a completely equivalent manner, 

as a permutation of the components of the tensor representation written down in a fixed basis,  

(1) (2)... ( ) 1 2(1), (2),..., ( ) ... ,p

p pp T          =    T T e e e  (S.2) 

For permutation operations   of a tensor, it is convenient to introduce the following more 

compact notation 
( (1) (2) ... ( )(1), ... , ( ) pp            T T T . When it is known from the 

context that the order of only two indices changes, it is convenient to specify only those indices 

that are changed, e.g. in the case of fourth-order tensors 4,2 
T  instead of 1,4,3,2 

T . 

The permutation operation is an automorphism, i.e. it is a reversible, linear transformation 

of tensor space p  on itself ( : )onp p ⎯⎯→ . 

The set of all permutation transformations operating in the space of tensors of a fixed 

order constitutes the group ( )
, cf. Definition S9, which allows introducing the concept 

of the internal symmetry of tensors. The size of this group is finite and equals !p  elements, for 

example, for tensors of the 4-th order there are 4! 24=  elements in this group. 

 

Definition S2. An internal symmetry group of tensor pT  is a subset of the permutation 

group  , whose elements satisfy the condition 

 { ; }, .       = T TT T  (S.3) 

The tensors T  satisfying the condition (S.3) are called (internally) symmetric tensors with 

respect to permutations 
  T

. 

A tensor T  is (internally) symmetric over a pair of indices ( , )  , if equality holds, 

,

... ..... .. ... ..... .., ~ T T 

   

 = =T T , i.e. when the elements of the tensor T  representation in any 

fixed basis when swapping the places of indices ( , )   are the same. In the case of fourth-
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order tensors, the symmetry with respect to permutation operation  1,3,2,4    means that 

1,2,3,4 1,3,2,4   = =T T T , i.e. ijkl ikjlT T→  in any fixed basis. 

Definition S3. A tensor is absolutely (internally) symmetric when the group of its symmetries 

is the entire set of permutations 
 =T . 

Definition S4. A set of second-order tensors Q  with properties, 

 
2{ ; , det 1}T T=  = = = Q QQ Q Q 1 Q  (S.4) 

is a group and is called the group of orthogonal tensors. 

Definition S5. A subset of orthogonal tensors for which 

 
2{ ; , det( ) 1},T=  = = + Q QQ 1 Q  (S.5) 

is a group and is called a proper (special) orthogonal group or rotational group. In the literature, 

this group is often denoted by the symbol 3SO , in the case of a three-dimensional Euclidean 

space generating the considered tensor space. 

Definition S6. An external symmetry group of tensor pT  is the subset of all orthogonal 

tensors Q  that satisfy the following condition 

{ ; },=   = T TQ Q T T  ...( ... )ia jb kc ab cQ Q Q T TQ .(S.6) 

Tensors T  satisfying the condition (S.6) are called (externally) symmetric with respect 

to orthogonal transformations TQ . 

Definition S7. A tensor is isotropic when its group of external symmetry is the whole set 

of orthogonal tensors T = , cf. (S.4). 

Definition S8. A tensor is hemitropic (also called proper-isotropic) when its external symmetry 

group is the entire set of proper orthogonal tensors T = , cf. (S.5). 

Note. The above definitions clearly show that the symmetry property is a property of a tensor 

treated as an integrated entity composed of a basis and a representation (a matrix of components 

in a given basis), and not only a matrix of tensor components.  

Example. If a fourth-order tensor has three internal symmetries 1,2,3,4 2,1,3,4    =T T T , 
1,2,4,3 =T T , 3,4,1,2 =T T  and all its eigenvalues are non-negative, then it is called a Hooke’s 

tensor. The tensor is used to describe (model) the elastic properties of a linearly elastic material. 

The external symmetries of the Hooke’s tensor, that is, its invariance when subjected to the 

operation of orthogonal tensors Q  from certain subsets determine the symmetries of the 

material modeled with its help. 

The concept of a group is one of the most important concepts widely used in building theories 

(models) of real physical phenomena. 

Definition S9. A group is an algebraic structure ({ }, )G G   consisting of a non-empty set 

of elements { }G , and an operation " "  that assigns an element from { }G  to any pair 

of elements from { }G  ( : ( , ) { } { } { })g h G G g h G      , when the operation   

satisfies the following axioms 
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1 2 3
1 2 3 1 2 3

, ,
( ) ( ) ( ) ,

( ) , ( )

g g g G

e G g G g G h G

i g g g g g g

ii e g g e g iii g h h g e



   

  =  

 =  =  =  =



   
 (S.7) 

i.e. the operation   is associative (i), there exists a neutral element of the group (ii), for each 

element of the group there exists an inverse element (iii). 

A group is called commutative (Abelian Group) when the operation   is commutative 

,
( )

g h G
iv g h h g


 =  . 
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