The Misrepresentation of Petri Dish, as “petri” Dish, in the Scientific Literature

Abstract

The Petri dish is, without a doubt, a very basic, yet important and popular tool in microbiological and other biomedical experiments. It serves primarily as a support or structural platform for placing, growing or testing biological specimens, whether these be microbiological, animal, plant or human. Given its size, usually about 10 cm in diameter, the Petri dish is an ideal platform for cellular and tissue cultures.

Despite the commonality of Petri dishes, quite surprisingly, there is a pervasive error throughout the biomedical literature, namely its misspelling as “petri” dish. This is not a trivial issue since this dish is named after a scientist, Julius Richard Petri (1852–1921), so the upper-case “P” should not be represented as a lower-case “p”.

It is important to alert students and seasoned biomedical researchers, as well as the wider public, who might use this term, about the need to use the term Petri accurately, in order to respect its historical foundation.

To garner some appreciation of the extent of this error in the biomedical literature, a 2022 search on PubMed for either “Petri dish” or “petri dish” revealed 50 search results, 24 (or 48%) of which were of the latter, erroneous form in titles or abstracts. This suggests that the indicated error, which is in need of correction, may be widely pervasive in the biomedical literature.

Keywords: Petri dish, “petri” dish, basic and applied biology, cell, tissue and organ culture, microbiology, synthetic meat
Falszywe przedstawienie szalki Petriego jako szalki „petriego”, w literaturze naukowej

Abstrakt

Szalka Petriego jest bez wątpienia bardzo podstawowym, ale ważnym i popularnym narzędziem w eksperymientach mikrobiologicznych i innych biomedycznych. Służy przede wszystkim jako platforma wspierająca lub strukturalna, na której można umieszczać, hodować lub testować próbki biologiczne, niezależnie od tego, czy są to próbki mikrobiologiczne, zwierzęce, roślinne lub ludzkie. Biorąc pod uwagę jej rozmiar, zwykle około 10 cm średnicy, szalka Petriego jest idealna do kultur komórkowych i tkankowych.

Pomimo powszechności szalek Petriego, co dość zaskakujące, występuje wszechobecny błąd, a mianowicie błędna pisownia jako „szalka petriego”. To nie jest błahy problem, ponieważ szaloka ta nosi imię naukowca Julusa Richarda Petri (1852–1921), więc wielka litera „P” nie powinna być reprezentowana jako mała litera „p”.

Ważne jest, aby ostrzec studentów i doświadczonych badaczy biomedycznych, a także szerszą opinię publiczną, która może używać tego terminu, o potrzebie dokładnego używania terminu Petri, aby uszanować jego historyczne podstawy.

Aby ocenić zakres tego błędu w literaturze biomedycznej, wyszukiwanie w PubMed w 2022 r. terminów „szalka Petriego” lub „szalka petriego” ujawniło 50 rezultatów, z których 24 (lub 48%) dotyczyło tej drugiej, błędnej formy w tytule lub abstrakcie. Sugeneruje to, że wskazany błąd, który wymaga korekty, może być szeroko rozpowszechniony w literaturze biomedycznej.

Słowa kluczowe: szalka Petriego, szalka „petriego”, biologia podstawowa i stosowana, hodowla komórek, tkanki i organy, mikrobiologia, mięso syntetyczne

1. Introduction

Biomedical researchers might take some very basic tools for granted in the laboratory, not because they are not important, but because they are so commonly used that they have become almost common place. One of those tools is the Petri dish (sometimes referred to as Petri plate), a plastic or glass dish, typically about 10 cm in diameter, but also found in varying diameters, that is most frequently used in the culture of microbial, plant, animal, or human cells, or tissues and organs in the latter three groups, to study wide-ranging hypotheses in biomedicine. Experiments in basic and applied biology often require Petri dishes, and in most instances, except for rare exceptions, they need to be sterile in order to avoid microbial contamination. Pre-ordered plastic Petri dishes are often packaged and pre-sterilized because they are cannot be autoclaved since they melt, so they tend to serve only once (i.e., disposable Petri dishes), whereas glass Petri dishes can be easily autoclaved and reused multiple times. The gap between the base and lid can be sealed with a gas-permeable membrane such as Parafilm®, making it suitable for the culture of living cells and tissues. These characteristics make Petri dishes practically useful and versatile. In contrast to literal and thus tangible Petri dishes, figurative or intangible Petri dishes or experimental sand-pits, are where ideas are theoretically tested and explored (Wei et al. 2021)1, but these are not covered in this paper.

The origin of the word “Petri dish” is historically ascribed to a German scientist, a microbiologist, Julius Richard Petri (1852–1921), hence the use of his last or family name in the term, Petri dish (Grote 2018). The self- attribution of the name to a single scientist has been the subject of some challenge and controversy, the main argument being that other deserving scientists also contributed to the use and popularization of these dishes, and not only Petri (Shama 2019). Placing that controversy aside, until

1 Of eight mentions in this paper, only one (in the title) was as “Petri dish”, the remainder were as “petri dish”.

Jaime A. Teixeira da Silva
such time the name of the Petri dish is revised to something else, such as “culture dish” in order to reflect
a more historically neutral name, in the context of this paper, the correct term, with an upper-case “P”,
i.e., Petri dish, is assumed in this paper. Consequently, the spelling as “petri” dish, with a lower-case “p”,
is considered an error. This issue is not limited to academic research. In May 30, 2022, a US Republican
politician, Marjorie Taylor Greene, unfortunately referred to Petri dishes as “peach tree dishes” while
attempting to describe the artificial culture of meat cells2.

This paper has two objectives. First, to provide an appreciation of the use of Petri dishes in a wide
range of fairly recent (2021–2022) research applications. Second, given that “petri” dish is a de facto
erroneous form of Petri dish, i.e., an orthographic error, a major medical database (PubMed) was consulted
in order to gain an appreciation of the extent of this error by assessing the frequency of this error in 2022
indexed literature.

2. The wide use of Petri dishes in biomedical – and other – research

A search (June 4, 2022) for “Petri dish” on some popular openly available databases3, namely PubMed,
Elsevier’s sciencedirect.com, Springer Nature’s Springerlink and Google Scholar revealed 1880, 107,649
123,168 and 588,000 hits, respectively. Evidently, even though many results are likely to be false positives,
these findings point towards a popular topic and/or tool, primarily in the biomedical literature. To identify
papers that exemplify the wide-ranging use of Petri dishes in the biomedical literature, the search in Google
Scholar was limited to 2021-2022, in an attempt to identify select studies that represented the use of Petri
dishes in a wide range of experimental settings. Some papers, including those that are cited, employed
the erroneous spelling “petri”, as indicated in Table 1, and where this error exists in the original title, the
error is faithfully transcribed as such in the reference list, but is labelled with “[sic]” (e.g., Singh et al.
2022), to indicate this error.

This section is neither a review, nor a comprehensive or exhaustive exploration of the application
of Petri dishes in biomedical and other research, but serves only to highlight a wide range of studies that
showcase their application. Generally, Petri dishes are used either as a solid base or with a liquid. In the
latter case, typically, shake flasks would likely be used for liquid-based cell cultures. In the case of solid
use, Petri dishes may be dry, with a solidified medium, such as agar, or with a moistened base, such as filter
paper, directly on the base of the dish, or overlaying the medium. In several cases in Table 1, Petri dishes
are used for very simplistic – yet important, standard and convenient – purposes, such as a platform
on which to place experimental biological samples. In such cases, they are almost essential materials. Petri
dishes also serve as a useful tray to weigh reagents on a scale. Petri dishes are popular containers for
studying the behavior of organisms because they are transparent, so biological samples can be observed
at least clearly from the top and bottom, and can also be photographed under a light microscope. A wide
range of applications across several fields of study, often multidisciplinary in nature, are presented in Table
1. Even though several (16/38, or 42%) of these studies employed the erroneous version of Petri dish
(i.e., petri dish), as indicated by an asterisk in Table 1, readers are cautioned that the existence of this error
alone should not exclude the use and citation of such studies, i.e., this orthographic and/or typographic error
does not invalidate these studies’ scientific merit.

3. Petri dish-related errors in PubMed

As briefly mentioned above, a search on PubMed revealed 1880 results, including in all fields (title, abstract,
etc.). Curiously, a search for “Petri dish” and “petri dish” revealed identical search results, suggesting that

2 See Kaonga 2022 (at 13/14 seconds): “…a cheeseburger which is very bad because Bill Gates wants you
to eat his fake meat that grows in a peach tree dish, so you’ll probably get a little zap inside your body and that say
“no, no”, don’t eat a real cheeseburger, you need to eat the fake, the fake burger, the fake meat from Bill Gates”
(transcribed by the author after listening carefully to the video transcript) (May 30, 2022; last accessed, June 4, 2022).
3 Scopus and Web of Science were not consulted since they are proprietary and thus not free to access or search.
PubMed does not recognize, or is unable to differentiate, this error. This compounds concerns about errors, inaccuracies and scientifically suspect literature on this popular biomedical database (Teixeira da Silva 2023).

Limiting the search to 2022 revealed a total of 50 hits, the entries of which were manually examined to ascertain where the error existed (i.e., in the title or abstract). The full texts, several of which could not be accessed, were not examined, also because full texts do not form part of indexing in PubMed. That assessment revealed that out of 50 hits, 24 (48%) contained the erroneous “petri dish”. Strictly speaking, in a biomedical literature that strives to be as accurate and error-free as possible, such errors would need to be corrected (Teixeira da Silva 2016). The reason is that a biomedical researcher that unsuspectingly uses (i.e., by citation) a paper that employs the erroneous form of “Petri dish” may unwittingly carry this error forward in their own scientific paper, thereby propagating the error downstream in the information flow (Teixeira da Silva 2016). Finally, some may argue that if such errors would be corrected every time that an error is detected, for example during post-publication peer review, especially those who may argue that such errors are minor or trivial, that the literature would be awash with errata. This suggests that current models to correct the literature are still insufficiently robust or unsustainable (Teixeira da Silva, Nazarovets 2022).

4. Conclusion and limitations

The Petri dish is, as can be appreciated in this paper, and even given how widely it appears in some major databases, a popular, useful, and versatile tool and support structure in basic and applied biomedical research. In some cases, given its pertinent application to technologies and scientific discoveries that may find practical applications in society, it is a term that might appear in public, and thus be the subject of public and even political debate. The “petri dish” error is thus not only limited to biomedical researchers, but is also of interest and relevance to the wider public. In that sense, this paper serves informative, educational and corrective purposes. Finally, the argument is made that since “petri” dish is a de facto erroneous form of Petri dish, scientific literature – especially that indexed in leading scientific platforms such as Scopus, Web of Science, PubMed, and Google Scholar – is in need of correction. It can be argued that journals or publishers that derive benefit (e.g., citations, subscriptions, sales, etc.) from erroneous literature, and who turn a blind eye to errors in literature that they distribute and sell, derive such benefit unfairly (Teixeira da Silva, Vuong 2021).

In the third section of this paper, a small analysis was conducted using only PubMed, a public portal, because Web of Science and Scopus are proprietary and thus the databases are not freely accessible. In PubMed, to gain a crude appreciation of the level of this error, 2022 data was examined in detail, revealing a 48% error rate (title or abstract), or 42% in the sample set examined separately in Table 1 (whole texts). Scientific sleuths with advanced bibliometric and informatics skills that are interested in this topic would do well to explore PubMed and other major databases in greater detail to appreciate if these values are consistent over several years, or if there are country-, journal-, or publisher-based patterns of errors.

5. Conflicts of interest

The author declares no conflicts of interest of relevance to this topic.

6. Author contributions

The author contributed fully to the intellectual discussion underlying this paper, literature exploration, writing, reviews and editing, and accepts responsibility for the content, analyses and interpretation herein.
Table 1. Wide range of uses of Petri dishes in biomedical – and other – research, pure and applied

<table>
<thead>
<tr>
<th>Broad field of research (sub-field)</th>
<th>Brief description of application of Petri dishes</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algology</td>
<td>To assess the impact of dehydration on photochemical efficiency of a red alga (Neopyropia yezoensis).</td>
<td>Terada et al. 2021*</td>
</tr>
<tr>
<td>Biocontrol (insect)</td>
<td>For rearing, and assessment of the development, reproduction, and oviposition of pests (thrips, whiteflies and spider mites).</td>
<td>San et al. 2021</td>
</tr>
<tr>
<td>Biocontrol (plant)</td>
<td>To expose aphids to companion plant (leek; Allium porrum) volatile organic compounds to assess impact of colonization of host plants (sweet pepper; Capsicum annuum).</td>
<td>Baudry et al. 2021</td>
</tr>
<tr>
<td>Biocontrol (plant)</td>
<td>To assess phytopathological potential of two plant (Parthenocissus quinquefolia and Plectranthus neochilus) extracts to control tomato early blight (Alternaria solani).</td>
<td>Mohamed et al. 2021</td>
</tr>
<tr>
<td>Development</td>
<td>To grow Dictyostelium discoideum cells with cln5-deficiency in various assays to assess cellular growth and development.</td>
<td>McLaren et al. 2021</td>
</tr>
<tr>
<td>Ecology (arthropod)</td>
<td>To place arthropod samples whose images were captured, and applied, using computer vision-aided deep learning, to appreciate arthropod abundance, biomass and diversity.</td>
<td>Schneider et al. 2022*</td>
</tr>
<tr>
<td>Ecology (climate change)</td>
<td>To rear two marine invertebrates (Pyura herdmani, Pyura stolonifera), and assess the performance of parental and hybrid crosses under different climate change scenarios.</td>
<td>Hudson et al. 2021</td>
</tr>
<tr>
<td>Ecology (fish conservation)</td>
<td>To count and measure the size of fish (Round Hickorynut; Obovaria subrotunda) glochidia.</td>
<td>Shepard et al. 2021</td>
</tr>
<tr>
<td>Ecology (invertebrate)</td>
<td>To rear an invasive insect (fall armyworm; Spodoptera frugiperda) that impacts corn in China, to appreciate its life history.</td>
<td>Huang et al. 2021</td>
</tr>
<tr>
<td>Ecology (plant)</td>
<td>To assess the germination of seeds of perennial grasses (Festuca valesiaca, Poa densa, Stipa zalesskii) that had been exposed to mountain fires, and thus smoke and heat.</td>
<td>Zaki et al. 2021</td>
</tr>
<tr>
<td>Ecology (vertebrate)</td>
<td>To appreciate the impact of passage through the digestive tract of a marsupial (Dromiciops gliroides) in a temperate forest on seed germination ability of seeds from consumed fruits.</td>
<td>Vazquez et al. 2022</td>
</tr>
<tr>
<td>Engineering</td>
<td>To serve as a chemical reactor to appreciate the fractal growth of copper.</td>
<td>Wang et al. 2021*</td>
</tr>
<tr>
<td>Entomology</td>
<td>To assess the survival of susceptible and kdr-resistant strains of malaria mosquito (Anopheles gambiae) larvae in an insecticide-free environment.</td>
<td>Medjigbodo et al. 2021*</td>
</tr>
<tr>
<td>Environment (pollution)</td>
<td>To microscopically examine microplastics isolated from salt marsh sediments.</td>
<td>Lloret et al. 2021*</td>
</tr>
<tr>
<td>Evolution (fly sexual selection)</td>
<td>To rear fruit fly (Drosophila melanogaster) eggs.</td>
<td>Hotzy et al. 2022</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Materials science (microbiology)</td>
<td>For culture of alkali-resistant bacterium (Bacillus subtilis M9) to assess its ability to precipitate calcium carbonate in the repair of a fiber matrix.</td>
<td>Feng et al. 2021*</td>
</tr>
<tr>
<td>Materials science (nanotechnology)</td>
<td>Use as a platform for the creation of copper nanowires to develop cotton-based wearable heat fabrics.</td>
<td>Guo et al. 2021*</td>
</tr>
<tr>
<td>Materials science (nanomedicine)</td>
<td>Use as a base to coat the nanopatterned surface of polycaprolactone with gelatin to create fortified biomedical patches.</td>
<td>Kim et al. 2021*</td>
</tr>
<tr>
<td>Microbiology (antimicrobial)</td>
<td>Assays to assess the effectiveness of 19 essential oils on the growth and sensitivity of 10 microbes.</td>
<td>Abers et al. 2021*</td>
</tr>
<tr>
<td>Microbiology (bacteria)</td>
<td>To assess surface motility as a precursor for software designed to measure spread.</td>
<td>Casado-García et al. 2021*</td>
</tr>
<tr>
<td>Microbiology (fungi)</td>
<td>To assess the characteristics of nono- and cocultures of Monascus spp. and Aspergillus niger, which are used to brew rice wine and cereal vinegar.</td>
<td>Yuan and Chen 2021*</td>
</tr>
<tr>
<td>Microbiology (viruses)</td>
<td>To assess the efficiency of collection of respiratory viruses (influenza A virus, human metapneumovirus, parainfluenza virus type 3, and respiratory syncytial virus) on a cascade impactor with solid or semi-solid media.</td>
<td>Kutter et al. 2021*</td>
</tr>
<tr>
<td>Neurobiology</td>
<td>To culture mouse embryonic stem cells and P19 embryonal carcinoma cells for the assay of mesoderm-specific transcript in primary hippocampal or cortical neurons.</td>
<td>Prasad et al. 2021</td>
</tr>
<tr>
<td>Oncology</td>
<td>To culture human malignant melanoma cells (A375) for the live-dead assay.</td>
<td>Tang et al. 2021*</td>
</tr>
<tr>
<td>Parasitology (veterinary)</td>
<td>To count the number of fluke (Fasciola hepatica) eggs in livestock (sheep and cattle) feces.</td>
<td>Reigate et al. 2021*</td>
</tr>
<tr>
<td>Plant science (ecology)</td>
<td>To assess the growth of hyphae of homo- and dikaryotic strains of an arbuscular mycorrhizal fungus (Rhizophagus irregularis) in root organ cultures of three plant hosts.</td>
<td>Serghi et al. 2021*</td>
</tr>
<tr>
<td>Plant science (phytopathology)</td>
<td>Use in pathogenicity assays to test the antifungal activity of bioactive compounds from an antagonistic rhizobacterium (Bacillus vietnaminensis), isolated from ginger (Zingiber officinale) rhizosphere against the agent of Pythium rot (Pythium myriotylum).</td>
<td>Jimtha John et al. 2021*</td>
</tr>
<tr>
<td>Plant science (thermotropism)</td>
<td>To establish a thermogradient for the assessment of thermotropism of maize (Zea mays) roots.</td>
<td>van Zanten et al. 2021*</td>
</tr>
<tr>
<td>Plant science (tissue culture)</td>
<td>To immobilize, culture and proliferate seedling-derived protoplasts of Arabidopsis thaliana.</td>
<td>Jeong et al. 2021*</td>
</tr>
<tr>
<td>Postharvest (seed germination)</td>
<td>To assess germination capacity of rice (Oryza sativa) grains that had been stored for variable periods of time.</td>
<td>Shu et al. 2021*</td>
</tr>
</tbody>
</table>
The Misrepresentation of Petri Dish, as “petri” Dish, in the Scientific Literature

<table>
<thead>
<tr>
<th>Reproductive biology</th>
<th>To examine testicular tissues or spermatozoa to determine sperm count in azoosperma.</th>
<th>Amer et al. 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil science</td>
<td>To probe reflectance spectra from the surface of soil samples.</td>
<td>Alomar et al. 2022</td>
</tr>
<tr>
<td>Stem cells (synthetic meat)</td>
<td>To culture skeletal muscle tissue on a hydrogel, or to induce muscle cells from embryonic or muscle stem cells, to generate in vitro cultured meat.</td>
<td>Singh et al. 2022*</td>
</tr>
<tr>
<td>Toxicology (food)</td>
<td>To assess the ability of lactic acid bacteria to detoxify aflatoxins (AFB₁, AFB₂) derived from Aspergillus flavus.</td>
<td>Ibitoye et al. 2021</td>
</tr>
<tr>
<td>Toxicology (herbicide)</td>
<td>To assess the toxicity of a chloroacetanilide herbicide (alachlor) on earthworm (Eisenia fetida).</td>
<td>Gangadhar et al. 2021*</td>
</tr>
<tr>
<td>Toxicology (nanoscience)</td>
<td>To assess the toxicological response of fruit fly (Drosophila melanogaster) eggs to cadmium oxide nanoparticles.</td>
<td>El Kholy et al. 2021*</td>
</tr>
<tr>
<td>Toxicology (pesticide)</td>
<td>To assess the toxicity of a systemic pesticide (fluralaner) on three insect pests (Henosepilachna vigintioctopunctata, Megalurothrips usitatus, Phyllotreta striolata).</td>
<td>Liu et al. 2021</td>
</tr>
</tbody>
</table>

* Indicates papers in which Petri dish was used erroneously as petri dish, in the paper (any location), any number of times; even if both correct (Petri dish) and incorrect (petri dish) uses appear in the same paper, an asterisk is indicated.

REFERENCES

Alomar, Samer; Mireei, Seyed Ahmad; Hemmat, Abbas; Masoumi, Amin Allah; Khademi, Hossein 2022: Prediction and variability mapping of some physicochemical characteristics of calcareous topsoil in an arid region using Vis-SWNIR and NIR spectroscopy. *Scientific Reports* 12(1), Art. No. 8435. DOI: 10.1038/s41598-022-12276-4.

Baudry, Xavier; Doury, Géraldine; Couty, Aude; Fourdoin, Yvelise; van Havermaet, Robin; Lateur, Marc; Ameline, Amoud 2021: Antagonist effects of the leek *Allium porrum* as a companion plant on aphid host plant colonization. *Scientific Reports* 11, Art. No. 4032. DOI: 10.1038/s41598-021-83580-8.

Jaime A. Teixeira da Silva

Guo, Zhiguant; Sun, Chao; Wang, Juan; Cai, Zaisheng; Ge, Fengyan 2021: High-performance laminated fabric with enhanced photothermal conversion and Joule heating effect for personal thermal management. ACS Applied Materials & Interfaces 13(7), pp. 8851–8862. DOI: 10.1021/acsami.0c23123.

Hotzy, Cosima; Fowler, Emily; Kiehl, Berit; Francis, Roy; Mason, Janet; Moxon, Simon; Rostant, Wayne; Chapman, Tracey; Immler, Simone 2022: Evolutionary history of sexual selection affects microRNA profiles in Drosophila sperm. Evolution 76(2), pp. 310–319. DOI: 10.1111/evo.14411.

Kim, Susjin; Gwon, Yonghyun; Park, Sunho; Kim, Woohan; Jeon, Yubin; Han, Taesong; Jeong, Hoon Eui; Kim, Jangho 2021: Synergistic effects of gelatin and nanotopographical patterns on biomedical PCL patches for enhanced mechanical and adhesion properties. Journal of the Mechanical Behavior of Biomedical Materials 114, Art. No. 104167. DOI: 10.1016/j.jmbbm.2020.104167.

Liu, Zhuoqi; Khan, Muhammad Musa; Fajar, Anugerah; Chen, Shimin; Guo, Muxuan; Chen, Yueyin; Yang, Chunxiao; Wu, Jianhui; Qiu, Baoli; Zhou, Xuguo; Pan, Huipeng 2021: Toxicity of fluralaner against vegetable pests and its sublethal impact on a biocontrol predatory ladybeetle. Ecotoxicology and Environmental Safety 225, Art. No. 112743. DOI: 10.1016/j.ecoenv.2021.112743.

Llort, Javier; Pedrosa-Pamies, Rut; Vandal, Nicole; Rotty, Ruby; Ritchie, Miriam; McGuire, Claire; Chenoweth, Kelsey; Valiela, Ivan 2021: Salt marsh sediments act as sinks for microplastics and reveal effects of current and historical land use changes. Environmental Advances 4, Art. No. 100060. DOI: 10.1016/j.envadv.2021.100060.

Mohamed, Abeer A.; Salih, Mohsen M.; El-Dein, Manal M.; El-Heify, Mervat; Al, Hayssam M.; Farraj, Dania A. Al; Hatamleh, Ashraf A.; Salem, Mohamed Z.M.; Ashmawy, Nader A. 2021: Ecofriendly bioagents, Parthenocissus quinquefolia, and Plectranthus neochilus extracts to control the early blight pathogen (Alternaria solani) in tomato. Agronomy 11, Art. No. 911. DOI: 10.3390/agronomy11050911.
The Misrepresentation of Petri Dish, as “petri” Dish, in the Scientific Literature

Prasad, Renuka; Jung, Hwajin; Tan, Anderson; Song, Yonghee; Moon, Sungho; Shaker, Mohamed R.; Sun, Woong Lee, Jungho; Ryu, Hoon; Lim, Hyun Kook; Jho, Eek-Hoon 2021: Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer’s disease. Scientific Reports 11(1), Art. No. 20075. DOI: 10.1038/s41598-021-99562-9.

Teixeira da Silva, Jaime A.; Vuong, Quan-Hoang 2021: Do legitimate publishers profit from error, misconduct or fraud? Exchanges 8(3), pp. 55–68. DOI: 10.31273/erir.v8i3.785.

Terada, Ryuta; Nishihara, Gregory N.; Arimura, Kaname; Watanabe, Yuki; Mine, Takayuki; Morikawa, Tarou 2021: Photosynthetic response of a cultivated red alga, Neopyropia yezeoensis f. narawaeensis (=Pyropia yezeoensis f. narawaeensis; Bangiales, Rhodophyta) to dehy dration stress differs with between two heteromorphic life-history stages. Algal Research 55, Art. No. 102262. DOI: 10.1016/j.algal.2021.102262.

Wang, Jiqin; Yi, Xiaoxia; Zeng, Xiangfei; Chen, Shuyuan; Wang, Rui; Shu, Jiancheng; Chen, Mengjion; Xiao, Zengxue 2021: Copper fractal growth during recycling from waste printed circuit boards by slurry electrolysis. *Frontiers of Environmental Science & Engineering* 15(6), Art. No. 117. DOI: [10.1007/s11783-021-1405-7](https://doi.org/10.1007/s11783-021-1405-7).

Wei, Jerry; Suriawinata, Arief; Ren, Bing; Liu, Xiaoying; Lisovsky, Mikhail; Vaickus, Louis; Brown, Charles; Baker, Michael; Tomita, Naofumi; Torresani, Lorenzo; Wei, Jason; Hassanpour, Saeed 2021: A Petri dish for histopathology image analysis. [In:] Alan Tucker, Pedro Henriques Abreu, Jaime Cardoso, Pedro Pereira Rodrigues, David Riano (eds), *Artificial Intelligence in Medicine. AIME 2021*. “Lecture Notes in Computer Science” vol. 12721. Cham, Switzerland: Springer, pp. 11–24. DOI: [10.1007/978-3-030-77211-6_2](https://doi.org/10.1007/978-3-030-77211-6_2).
